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For observations X = (Xi,...,X,) and statistic T(X), the conditional probability
fx|T(X)(X‘t,6) = Pg{Xl = T1y.-- ,Xn = SL'n|T(X) = t} (1)

is, typically, a function of both t and 6.
However, consider the case X = (Xi,...,X,), a sequence of n Bernoulli trials with success probability
parameter § and the statistic T(X) = X; + - - - + X, the total number of successes. Then

Be(xl) = Po{Xy =1, X = ) = 051 (1 — )00 L gea (1 — g)(1-en)
9z1+---+mn(1 _ 9)(71*(901"'“%))

and T'(X) is a Bin(n,d) random variable.
Referring to equation (1), if Y | @; # t, then the value of the statistic is incompatible with the obser-
vations. In this case, equation (1) equals 0. On the other hand, if > | ; = ¢, then, we have,

R X WL CU () -
X|T(X) ) fT(X)(t|9) Pg{T(X) — t} (?)et(l —f)n—t ¢ )
an answer that does not depend on the parameter 6.

Definition 1. For observations X1, ...,X,, the statistic T, is called a sufficient statistic if equation (1)
is a function of the values, t, of the statistic and does not depend on the value of the parameter 6.

Thus, by the law of total probability
Py{Xy=21,...,. Xn=a,} =P{X1=21,...,. X,y =2, |T(X) =TX)} Pp{T(X) =T(x)}.
and once we know the value of the sufficient statistic, we cannot obtain any additional information about
the value of 6 from knowing the observed values X; ..., X,,.
How we find sufficient statistics is given by the Neyman-Fisher factorization theorem.
1 Neyman-Fisher Factorization Theorem

Theorem 2. The statistic T is sufficient for 0 if and only if functions g and h can be found such that

fx (x]0) = h(x)g(0, T (x)) (2)



The central idea in proving this theorem can be found in the case of discrete random variables.

Proof. Because T is a function of x,

fx (x|0) = fX,T(X)(Xa T(x)|0) = fX\T(X)(X|T(X>7 e)fT(X)(T<X)|‘9)'

If we assume that 7" is sufficient, then fx|7(x)(x|T'(x), ) is not a function of # and we can set it to be h(x).
The second term is a function of T'(x) and §. We will write it g(0, T'(x)).
If we assume the factorization in equation (3), then, by the definition of conditional expectation,

Pp{X =x,T(X) =t}
Po{T(X) =t}

Py{X = x|T(X) = t} =

or,
fx rx)(x,t]0)

fxirx) (x[t,0) = Fro0) (110)
The numerator is 0 if T'(x) # t and is
fx (x]0) = h(x)g(0,1)
otherwise.
The denominator

frooe) = Y fx(&XlO)= > h&X)4g0.1).

%:T (%)=t %:T (%)=t
The ratio h(x)g(6.) h(x)
x)g(6, X
fx|r(x) (x[t, 0) = = = =
o Zi:T(i):t h(x)g(0,1) Zi:T(i):th(X)
which is independent of 6 and, therefore, T is sufficient. O

2 Maximum Likelihood Estimation
Looking at the likelihood in the case of a sufficient statistic, we have that
L(0|x) = h(x)g(0, T'(x)).

Thus, maximizing the likelihood is equivalent to maximizing ¢(6,7T(x)) and the maximum likelihood esti-
mator

0(T(x))

is a function of the sufficient statistic.

3 Unbiased Estimation

We shall learn something about the value of sufficient statistics for unbiased estimators after we review a
couple of facts about conditional expectation. Write

$(u) = EY|U =u] =) yfriv(ylu)



In words, ¢(u) is the average of Y on the set {U = u}. Thus, by the law of total probability

ZEYIU = ulfu(u Znyyw ylu) fy (u Z Zf vou) =Y yfr(y) =py.  (4)

u

Also,

oy = E[(Y —py)’] = ElY = o(U)) + (6(U) — 1y))’]
= E[(Y = ¢(U))’] + 2B[(Y = ¢(U))(&(U) = py)] + E[(d(U) = pv)?]

The second term

E[Y =) (bU) —py)] = DD (y—d(w)(d(u) — py)f(y,u)

= > (é(u) = py) <Z(y - ¢(U))fY|U(y|u)> fy (u) =0.

u Y

The sum in parenthesis is 0 because ¢(u) is the mean of the conditional density function fy |y (y|u), i.e.,

Z(y = o(w) frv(ylu) = nyY\U (ylu) — ZfY|U ylu) = nyyw(y\u) — ¢(u) =0.

Y

Consequently, from equation (3)
oy = E[(Y — o(U))?] + 051y
and
0% > oi(U). (5)
with equality if and only if Y = ¢(U).
If d(X) is an estimator and T'(X) is a sufficient statistic, then Fy[d(X)|T(X)] does not depend on 6§ and
thus, it is also a statistic. Let’s call it ¢(T(X)).
By equation (4),
9(0) = Epd(X) = Egp(T(X)).
Thus, if d(X) is an unbiased estimator, then so is ¢(7'(X)). In addition, be equation (5),

Varg(¢(T(X)) < Varg(d(X)). (6)

with equality if and only if d(X) = ¢(T(X)) and the estimator is a function of the sufficient statistic.
Equation (6) is called the Rao-Blackwell theorem.

4 Examples

Example 3 (Uniform random variables). Let Xi,---, X, be U(0,0) random variables. Then, the joint
density function
n ) ) <z; <
f(x|9):{ 1/60 if, for all i, 0 < x; <0,

0 otherwise.



If we rewrite this using indicator function notation, then
B (xI6) = 5o (i o:)
XX|P) = G t0.6\ [P Ti)-

Thus, T(x) = maxi<;<n ®; 1 a sufficient statistic with the factorization
h(x) =1 and g(0,t) = I;o,9/(t)/0".

Example 4 (Exponential families). Recall that an exponential family of random variables has its density of
the form

fx(x]0) = c(0)h(z) exp(v(0)T(x)).
Thus by the factorization theorem, T is a sufficient statistic. v is called the natural parameter.

Example 5 (Bernoulli observations). The density is

9 (T14-+Tn)
fx (x]0) = g1 Fon (1 — g) = ten) — (1 — g)" (1_ e)

Thus, the sufficient statistic is sum of the observations T(x) = x1 + -+ + x, and the natural parameter
v(f) =1n(8/(1 —0)), the log-odds,

Example 6 (Gamma random variables). For a multidimensional parameter space, the exponential family is
defined with the product in the exponential replaced by the inner product.

fx (2]0) = c(0)h(x) exp(v(0), T (x))-

For a gamma random variable, we have the density,

Fxala ) = s e

Thus for n independent T'(c, B) random variables

fx (x]a, B) Fﬁ(;;n (1 -- ‘xn)afl exp(—B(z1 + -+ xp))
ﬂna .
= W(ﬂh cexp)expla(lnzg -+ 1Inxy,) — Blar + -+ xy)).

Thus, the sufficient statistic
T(x)=(Inzy + - +Inz,,x1 + -+ x4).

and the natural parameters

v(e, f) = (@, =)



