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We begin with a sample X = (X1, . . . , Xn) of random variables chosen according to one of a family of
probabilities Pθ where θ is element from the parameter space Θ.

For random variables, we shall use the term density function to refer to both continuous and discrete
random variables. Thus, to each θ ∈ Θ, there exists and density function which we denote

f(x|θ).

Example 1 (Parametric families of densities).

1. Binomial random variables with known number of trials n but unknown success probability parameter
θ has density

f(x|θ) =
(

n

x

)
θx(1− θ)n−x.

2. Normal random variables with known variance σ0 but unknown mean µ has density

f(x|µ) = .
1

σ0

√
2π

exp
(
− (x− µ)2

2σ2
0

)
.

3. Normal random variables with unknown mean µ and variance σ has density

f(x|µ, θ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

Definition 2. A statistic is a function of the random variable that does not depend on any unknown
parameter.

The goal of estimation is to determine which of the Pθ is the source of the data X. In this case the action
space A is the same as the parameter space and the estimator is the decision function

d : data → Θ.

Example 3. If X = (X1, . . . , Xn) are independent Ber(θ) random variables, then the simple choice for
estimating θ is

d(x1, . . . , xn) =
1
n

(x1 + · · ·+ xn) = x̄.
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1 Unbiased Estimators

Definition 4. A statistic d is called an unbiased estimator for a function of the parameter g(θ) provided
that for every θ ∈ Θ

Eθd(X) = g(θ).

Any estimator that not unbiased is called biased.
If the image of g(θ) is a vector space, then the bias

bd(θ) = Eθd(X)− g(θ).

Exercise 5. If X1, . . . , Xn form a simple random sample with unknown finite mean µ, then X̄ is an unbiased
estimator of µ. If the Xi have variance σ2, then

Var(X̄) =
σ2

n
.

If we choose the quadratic loss function L(θ, a) = (a− θ)2, then corresponding risk function

R2(g(θ), d) = Eθ[(d(X)− g(θ))2] = Eθ[(d(X)− Eθd(X) + bd(θ))2]
= Eθ[(d(X)− Eθd(X))2] + 2bd(θ)(Eθ[(d(X)− Eθd(X)] + bd(θ)2

= Varθ(d(X)) + bd(θ)2

Note that the risk is the variance of an unbiased estimator and the bias adds to the risk.

In the example above, with d(X) = X̄,

EθX̄ =
1
n

(θ + · · ·+ θ) = θ

Thus, x̄ is an unbiased estimator for θ. In addition,

Var(X̄) =
1
n2

(θ(1− θ) + · · ·+ θ(1− θ)) =
1
n

θ(1− θ).

Example 6. If, in addition, the simple random sample has unknown finite variance σ2, then, we can consider
the sample variance

S2 =
1
n

n∑
i=1

(Xi − X̄)2.

To find the mean of S2, we begin with the identity

n∑
i=1

(Xi − µ)2 =
n∑

i=1

((Xi − X̄) + (X̄ − µ))2

=
n∑

i=1

(Xi − X̄)2 +
n∑

i=1

(Xi − X̄)(X̄ − µ) + n(X̄ − µ)2

=
n∑

i=1

(Xi − X̄)2 + n(X̄ − µ)2
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Then,

ES2 = E

[
1
n

n∑
i=1

(Xi − µ)2 − (X̄ − µ)2
]

=
1
n

nσ2 − 1
n

σ2 =
n− 1

n
σ2.

Thus,

E

[
n

n− 1
S2

]
= σ2

and
n

n− 1
S2 =

1
n− 1

n∑
i=1

(Xi − X̄)2

is an unbiased estimator for σ2.

Definition 7. An unbiased estimator d is a uniformly minimum variance unbiased estimator (UMVUE)
if d(X) has finite variance for every value θ of the parameter and for every unbiased estimator d̃,

Varθd(X) ≤ Varθd̃(X).

The efficiency of unbiased estimator d̃,

e(d̃) =
Varθd(X)
Varθd̃(X)

.

Thus, the efficiency is between 0 and 1.

2 Cramér-Rao Bound

First, we will review a bit on correlation. For two random variables Y and Z, the correlation

ρ(Y, Z) =
Cov(Y,Z)√

Var(Y )Var(Z)
. (1)

The correlation takes values −1 ≤ ρ(Y, Z) ≤ 1 and takes the extreme values ±1 if and only if Y and Z are
linearly related, i.e., Z = aY + b for some constants a and b. Consequently,

Cov(Y, Z)2 ≤ Var(Y )Var(Z).

If the random variable Z has mean zero, then Cov(Y, Z) = E[Y Z] and

E[Y Z]2 ≤ Var(Y )Var(Z) = Var(Y )EZ2. (2)

We begin with data X = (X1, . . . , Xn) drawn from an unknown probability Pθ. The paramater space
Θ ⊂ R. Denote the joint density of these random variables

f(x|θ), where x = (x1 . . . , xn).
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In the case that the date comes from a simple random sample then the joint density is the product of the
marginal densities.

f(x|θ) = f(x1|θ) · · · f(xn|θ). (3)

For continuous random variables, we have

1 =
∫

Rn

f(x|θ) dx (4)

Now, let d be the unbiased estimator of g(θ), then

g(θ) = Eθd(X) =
∫

Rn

d(x)f(x|θ) dx (5).

If the functions in (4) and (5) are differentiable with respect to the parameter θ and we can pass the
derivative through the integral, then

0 =
∫

Rn

∂f(x|θ)
∂θ

dx =
∫

Rn

∂ ln f(x|θ)
∂θ

f(x|θ) dx = Eθ

[
∂ ln f(X|θ)

∂θ

]
. (6)

From a similar calculation,

g′(θ) = Eθ

[
d(X)

∂ ln f(X|θ)
∂θ

]
. (7)

Now, return to the review on correlation with Y = d(X) and the score function Z = ∂ ln f(X|θ)/∂θ..
Then, by equation (6), EZ = 0, and from equations (7) and (2), we find that

g′(θ)2 = Eθ

[
d(X)

∂ ln f(X|θ)
∂θ

]2

≤ Varθ(d(X))Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]

,

or,

Varθ(d(X)) ≥ g′(θ)2

I(θ)
. (8)

where

I(θ) = Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]

is called the Fisher information.
Equation (8), called the Cramér-Rao lower bound or the information inequality, states that the

lower bound for the variance of an unbiased estimator is the reciprocal of the Fisher information. In other
words, the higher the information, the lower is the possible value of the variance of an unbiased estimator.

If we return to the case of a simple random sample then

ln f(x|θ) = ln f(x1|θ) + · · ·+ ln f(xn|θ).

Also, the random variables {ln f(xk|θ); 1 ≤ k ≤ n} are independent and have the same distribution. Thus,
the Fisher information.

I(θ) = nE[(ln f(X1|θ))2].
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Example 8. For independent Bernoulli random variable with unknown success probability θ,

ln f(x|θ) = x ln θ + (1− x) ln(1− θ),

∂

∂θ
f(x|θ) =

x

θ
− 1− x

1− θ
=

x− θ

θ(1− θ)
,

E

[(
∂

∂θ
f(X|θ)

)2
]

=
1

θ2(1− θ)2
E[(X − θ)2] =

1
θ(1− θ)

and the information is the reciprocal of the variance. Thus, by the Cramér-Rao lower bound, any unbiased
estimator based on n observations must have variance al least θ(1 − θ)/n. However, if we take d(x) = x̄,
then

V arµd(X) =
θ(1− θ)

n

and x̄ is a uniformly minimum variance unbiased estimator.

Example 9. For independent normal random variables with known variance σ2
0 and unknown mean µ,

ln f(x|µ) = − ln(σ0

√
2π)− (x− µ)2

2σ2
0

.

and
∂

∂µ
f(x|µ) =

1
σ2

0

(x− µ).

E

[(
∂

∂µ
f(X|µ)

)2
]

=
1
σ4

0

E[(X − µ)2] =
1
σ2

0

.

Again, the information is the reciprocal of the variance. Thus, by the Cramér-Rao lower bound, any unbiased
estimator based on n observations must have variance al least σ2

0/n. However, if we take d(x) = x̄, then

V arµd(X) =
σ2

0

n
.

and x̄ is a uniformly minimum variance unbiased estimator.

Recall that for the correlation to be ±1, the estimator d(X) and the score function ∂ ln f(X|θ)/∂θ. must
be linearly related with probability 1.

∂

∂θ
ln f(X|θ) = a(θ)d(X) + b(θ)

After integrating, we obtain,
f(X|θ) = c(θ)h(x) exp(π(θ)d(X)). (9)

We shall call density functions satisfying equation (9) an exponential family with natural parameter
π(θ).
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Example 10 (Poisson random variables).

f(x|λ) =
λx

x!
e−λ = e−λ 1

x!
exp(x lnλ).

Thus, Poisson random variables are an exponential family. The score function

∂

∂λ
f(x|λ) =

∂

∂λ
(x lnλ− lnx!− λ) =

x

λ
− 1.

The Fisher information

I(λ) = Eλ

[(
X

λ
− 1

)2
]

=
1
λ2

Eλ[(X − λ)2] =
1
λ

.

If X is Pois(λ), then EλX = Varλ(X) = λ. For a simple random sample having n observations both X̄
and

∑n
k=1(XkX̄)2/(n− 1) are unbiased estimators. However,

Varλ(X̄) =
λ

n

and d(x) = x̄ has efficiency 1.
This could have been predicted. The density of n independent observations is

f(x|λ) =
e−nλλx1···+xn

x1! · · ·xn!
=

e−nλλnx̄

x1! · · ·xn!

and so the score function
∂

∂λ
ln f(x|λ) =

∂

∂λ
(−nλ + nx̄ lnλ) = −n +

nx̄

λ

showing that the estimator and the score function are linearly related.
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