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1 Introduction

The study of the dynamics of objects in Earth’s orbit has recently become very popular in light
of the growing problem of space debris. Space debris consists of objects such as broken pieces of
meteors, old satellites, chips of paint, etc. It has been estimated that over 500,000 pieces of debris
are currently in Earth’s orbit, and about 20,000 of those pieces are large enough to be actively
tracked (the smallest of these pieces are the size of a softball!). Nevertheless, all pieces of space
debris are causes of concern because of how fast they are traveling. The debris can travel up to
17,500 mph and can cause significant damage on impact.

In order to stop adding to this space pollution, we must become more responsible with the
objects we send into orbit. We must identify stable orbits in which to send out-of-use satellites
in order to reduce the number of collisions. Such stable orbits are called graveyard orbits. In [1],
[2], and [3], the authors analyze the dynamics of objects in Earth’s orbit in order to find potential
graveyard orbits. They are particularly interested in studying the areas where Galileo (the European
Union global navigation satellite system) is located.

1.1 Regions of Earth’s Orbit

There are four regions of Earth’s orbit:

1. LEO (Low Earth Orbit): This orbit spans the altitude from 0 to 2,000 km. The objects in
orbit feel the effects of

• the gravitational attraction of Earth

• dissipation due to the atmospheric drag

• the Earth’s oblateness effect

• the attraction of the Moon and Sun

• solar radiation pressure

2. MEO (Medium Earth Orbit): This orbit spans the altitude from 2,000 to 35,786 km. The
forces felt by the objects in orbit are similar to that of LEO, except there is no atmospheric
drag.
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3. GEO (Geostationary Orbit): This region is located at the altitude of 35,786 km. Geostation-
ary objects move with an orbital period equal to the rotational period of the Earth.

4. HEO (High Earth Orbit): This region refers to the space region with altitude above the
geosynchronous orbit.

For this project, we only consider objects in MEO. Objects in this region experience no dissipa-
tive forces, so there exists a Hamiltonian system that describes their motion.

1.2 The Classical Elements and Delaunay Variables

There are six classical elements that we make use of when studying objects in orbit [4]:

a : semi-major axis M : mean anomaly
e : eccentricity ω : argument of perigee
I : inclination Ω : longitude of the ascending node

We define the conjugate coordinates of the Delaunay variables as follows:

L =
√
µa l = M

G = L
√

1− e2 g = ω
H = G cos I h = Ω

2 Reduced Hamiltonian for Galileo Resonances

In [5], the reduced Hamiltonian is formulated for our problem, which is to analyze the behavior of
satellites or space debris in orbit while under the influence of lunisolar secular resonances:

• A lunar gravity secular resonance occurs whenever there exists an integer vector (k1, k2, k3) ∈
Z3 \ {0} such that

k1ω̇ + k2Ω̇ + k3Ω̇M = 0.

• A solar gravity secular resonance occurs whenever there exists an integer vector (k1, k2, k3) ∈
Z3 \ {0} such that

k1ω̇ + k2Ω̇ + k3Ω̇S = 0.

In particular, we are interested in the Galileo resonances, given by the triples n = (2, 1, 0),
n = (−2, 1,−1), and n = (0, 2,−1). The extended autonomous Hamiltonian expressed in the
Delaunay (G,H, g, h) and appended canonical variables (Γ, τ), where τ̇ ≡ ∂H/∂Γ = Ω̇M , has the
form

H(G,H,Γ, g, h, τ ;L) = Hsec(G,H;L) +Hlp(G,H, g, h, τ ;L) + Ω̇MΓ, (1)

where

Hsec(G,H;L) = HJ2 +Hsec
M +Hsec

S , (2)

Hlp(G,H, g, h, τ ;L) = Hlp
M +Hlp

S . (3)
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The secular perturbations due to the oblateness of the Earth is given by

HJ2(G,H;L) =

(
J2R

2µ4

4L3

)(
G2 − 3H2

G5

)
, (4)

and the secular perturbations due to the Moon and Sun are given by

Hsec
M (G,H;L) =

µM(1− 6C2 + 6C4)(2− 3 sin2 IM)

32µ2a3M(1− e2M)3/2
L4

(
5− 3

G2

L2

)(
1− 3

H2

G2

)
, (5)

Hsec
S (G,H;L) =

µS(2− 3 sin2 IS)

32µ2a3S(1− e2S)3/2
L4

(
5− 3

G2

L2

)(
1− 3

H2

G2

)
. (6)

Finally, the long-periodic lunisolar Hamiltonians are given by the following:

Hlp
M(G,H, g, h, τ ;L)

=
15µMCS

−1(−1 + 3C2 − 2C4)(2− 3 sin2 IM)

16µ2a3M(1− e2M)3/2
L4

(
1− G2

L2

)√
1− H2

G2

(
1 +

H

G

)
cos(2g + h)

− 15µMC
2(4C2 − 3) sin IM cos IM

16µ2a3M(1− e2M)3/2
L4

(
1− G2

L2

)√
1− H2

g2

(
1− H

G

)
cos(−2g + h− τ)

− 3µMC
3S−1(1− C2) sin IM cos IM
8µ2a3M(1− e2M)3/2

L4

(
5− 3

G2

L2

)(
1− H2

G2

)
cos(2h− τ), (7)

Hlp
S (G,H, g, h;L) =

15µS sin IS cos IS
16µ2a3S(1− e2S)3/2

L4

(
1− G2

L2

)√
1− H2

G2

(
1 +

H

G

)
cos(2g + h− ΩS) (8)

For the remainder of the discussion, we focus on the n = (2, 1, 0) apsidal resonance in isolation.

2.1 The Reduced Hamiltonian for the n = (2, 1, 0) apsidal resonance

The action-angle variables for the n = (2, 1, 0) apsidal resonance are

Λ1 = G/2, σ1 = 2g + h,

Λ2 = −G+ 2H, σ2 = h/2, (9)

Λ3 = Γ, σ3 = τ.

Treating this resonance in isolation, the reduced Hamiltonian becomes

H(Λ1,Λ2,Λ3, σ1;L) = Hsec(Λ1,Λ2;L) +Hlp(Λ1,Λ2;L) + Ω̇MΛ3 (10)

=
ξ(L)

32

(
1− 3Λ−1

1 Λ2 −
3

4
Λ−2

1 Λ2
2

)
Λ−3

1

+
ψ(L)

16
(1− 4L−2Λ2

1)(6 + Λ−1
1 Λ2)

√
12− 4Λ−1

1 Λ2 − Λ−2
1 Λ2

2 cosσ1

+ Ω̇MΛ3, (11)
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where

ξ(L) =
J2R

2µ4

4L3
,

ψ(L) =
15

16µ2

[
µMCS

−1(−1 + 3C2 − 2C4)(2− 3s2IM)

a3M(1− e2M)3/2
+

µSsIScIS
a3S(1− e2S)3/2

]
L4. (12)

The Hamiltonian equations become

Λ̇1 = −∂H
∂σ1

=
ψ(L)

16
(1− 4L−2Λ2

1)(6 + Λ−1
1 Λ2)

√
12− 4Λ−1

1 Λ2 − Λ−2
1 Λ2

2 sinσ1 (13)

σ̇1 =
∂H
∂Λ1

=
3ξ(L)

32

(
−1 + 4Λ−1

1 Λ2 +
5

4
Λ−2

1 Λ2
2

)
Λ−4

1

− ψ(L)

16

[
(48L−2Λ1 + Λ−2

1 Λ2 + 4L−2Λ2)

√
12− 4Λ−1

1 Λ2 − Λ−2
1 Λ2

2 (14)

− (1− 4L−2Λ2
1)(6 + Λ−1

1 Λ2)(2Λ−2
1 Λ2 + Λ−3

1 Λ2
2)(12− 4Λ−1

1 Λ2 − Λ−2
1 Λ2

2)
−1/2

]
cosσ1.

We can now analyze the phase portraits for different values of Λ2 and a, the semi-major axis.
The phase portraits were drawn in MATLAB by plotting the level curves of H. Figure 1 shows
the phase portrait for Λ2 = 0.06 and a = 15, 000. Notice the phase portrait resembles that of the
equations that govern the motion of a pendulum. Looking at Figures 2 and 3, we see bifurcations
occuring, as new equilibrium points are appearing.

Figure 1: Phase portrait of the Hamiltonian equations for the n = (2, 1, 0) apsidal resonance when
Λ2 = 0.06 a = 15, 000 km.
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Figure 2: Phase portrait of the Hamiltonian equations for the n = (2, 1, 0) apsidal resonance when Λ2 = 0.1
and a = 29, 546 km.

Figure 3: Phase portrait of the Hamiltonian equations for the n = (2, 1, 0) apsidal resonance when
Λ2 = 0.058 and a = 29, 546 km.

3 Conclusion

We have empirically shown that bifurcations occur in our Hamiltonian system for the n = (2, 1, 0)
apsidal resonance as we change the values of Λ2 and a. Future work would entail performing rigorous
bifurcation analysis on this system, as well as the systems that describe the other Galileo resonances,
n = (−2, 1,−1) and n = (0, 2,−1). Our ultimate goal is to rigorously study the dynamics of the
regions where there are overlapping resonances.
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