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Here is an alternative to the derivation given in the text, making use of a different trick. Let
n be a positive integer and p ∈ [0, 1]. Our goal is to calculate the mean of a binomial random
variable X ∼ Bin(n, p). That is, we want to evaluate the sum
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pk(1− p)n−k. (1)

Here is the trick: consider the function of two real variables

f (p, q) =
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pkqn−k. (2)

Note
f (p, q) = (p+ q)n (3)

by the Binomial Theorem. In particular, f (p, 1− p) = 1, which is just a restatement of the fact
that the binomial distribution is a probability mass function.

Now, if we differentiate f with respect to p, we get
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(We start the sum at k = 1 because the k = 0 term is just qn, and ∂
∂ p qn = 0.) Thus, we have
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If we now set q = 1− p, we get
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pk(1− p)n−k = E[X ]. (5)

So, if we can calculate p ∂∂ p f (p, q), we are done. But we have another expression for f (p, q),
namely Eq. (3), which tells us
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(p+ q)n
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= pn(p+ q)n−1.

Plugging in q = 1− p, we get E[X ] = np.
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