Lecture 1 notes

klin@math.arizona.edu

January 16, 2020

Examples:

- Queue
- Internet
- PageRank
- Geiger counter
- Brownian motion
- A simulation of Gambler's Ruin

Definitions:

- Law of alternatives. Suppose B_1, \cdots are a collection of events such that (i) $B_i \cap B_j = \emptyset$ for $i \neq j$, (ii) $\cup_i B_i = \Omega$, and (iii) $P(B_i) > 0$ for all i. Then for any event A we have

$$P(A) = \sum_{i} P(A|B_i)P(B_i). \tag{1}$$

The sum can be finite or infinite.

- Law of successive conditioning. Suppose A_1, \dots, A_n are a collection of events with positive probability. Then

$$P(A_1 \cap \dots \cap A_n) = P(A_1 | A_2, A_3, \dots, A_n) \cdot P(A_2 | A_3, A_4 \dots, A_n) \cdot \dots \cdot P(A_{n-1} | A_n) \cdot P(A_n).$$
 (2)

Note: the terminology I use is not universally used, though the results are very much standard.