
lec03–gamblers

January 26, 2020

Gambler’s ruin: how likely is the gambler still in the game after n steps?

[1]: using PyPlot

[2]: ## Function to construct the transition matrix.
Note in Julia matrix indices start with 1,
so all the indices here are off by 1, i.e.,
1 really means 0, 2 really means 1, etc.
function transmat(N;p=0.4)

P = zeros(N+1,N+1)
q = 1-p
P[1,1] = P[N+1,N+1] = 1
for i=2:N

P[i,i-1]=q
P[i,i+1]=p

end
P

end

[2]: transmat (generic function with 1 method)

[3]: P=transmat(3)

[3]: 4×4 Array{Float64,2}:
1.0 0.0 0.0 0.0
0.6 0.0 0.4 0.0
0.0 0.6 0.0 0.4
0.0 0.0 0.0 1.0

[4]: ## Use the above to calculate the probability of being alive after n steps,␣
↪→starting with X0 dollars.

function aliveprob(X0,n; N=3, p=0.4)
P=transmat(N;p=p)
1. - (P^n)[X0+1,1]

end

[4]: aliveprob (generic function with 1 method)

1

Probability of being in the game after n steps, starting with X0 dollars for different values of X0.

[5]: let nl=0:1000,
N=100
for X0 in [20,50,80,90,95,99]

plot(nl,map(n->aliveprob(X0,n;N=N),nl),".-"; label="X0=$X0")
end
axis([minimum(nl),maximum(nl),0,1])
legend()
grid()
xlabel("timestep n")
ylabel("Probability of being alive")

end

[5]: PyObject Text(24.000000000000007, 0.5, 'Probability of being alive')

Probabiliity of being in the game after n = 400 steps, as a function of X0.

[6]: let n=400,
N=100,
X0l = [10,20,30,40,50,60,70,80,90,95,99]

2

plot(X0l,map(X0->aliveprob(X0,n;N=N),X0l),"o-")
axis([minimum(X0l),maximum(X0l),0,1])
grid()
xlabel(L"initial amount X_0")
ylabel("Probability of being alive")
title("n=$n")

end

[6]: PyObject Text(0.5, 1, 'n=400')

[]:

3

