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Today’s agenda:
- A summary of key theorems regarding stationary distributions
- The Perron-Frobenius Theorem.

- A sketch of the Convergence Theorem for 2-state chains using the Perron-Frobenius
Theorem.

Stationary distributions

First, there seems to be some confusion about basic definitions:

- A probability distribution on the state space S is stationary if for all x € S,

> m(y)p(y, x) = m(x). )

y€Ss

- A Markov chain satisfied detailed balance with respect to a probability distribution = on
the state space S if for all x,y €S,

m(y)p(y,x) = n(x)p(x,y). (2)

Note that detailed balance is strictly stronger than stationarity: it implies stationarity but
stationarity does not imply detailed balance.

- A Markov chain is said to converge to equilibrium if
p"(x,y) = n(y) 3
as n — 00. Equivalently, a chain converges to equilibrium if for any initial distribution,

P(X,=y)— n(y). (4)

Here is a summary of key theorems| from the text.

Some of the theorems can be stated a bit more generally without much effort. For example,

the assumptions of irreducibility and recurrence in Theorem 1.20 are not really necessary:
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Theorem (1.20).
lim

n—,oo n

N,(y) :{ rrs [y <00 -

0, T, = oo.

Proof. If T, = oo then N,(y) = 0, so the conclusion is trivial.

If T, < oo (so the chain does reach y at some point), and y is recurrent, then the proof of
Theorem 1.20 applies. (Check it!)

Finally, if y is transient, therﬂ

P,(N(y) = 00) = lim P,(N(y) > k) (6a)
= lim ppl! )
=0. (60)

So N(y) < oo with probability 1. Since N,(y) < N(y) for all n, the conclusion follows. ]

Another theorem that generalizes slightly is Theorem 1.19. To avoid complications, here I
just state a result for finite state spaces.

Theorem (1.19). If |S| < oo and S is a disjoint union T UR, where T is the set of all transient
states and R is closed, irreducible, and aperiodic. Then p"(x,y) — n(y) for all x,y €8S.

Proof. We go through the different cases:

If x, y €R, then the result is just Theorem 1.19.

If x € Rand y € T, then from the proof of the Decomposition Theorem we know that
p"(x,y)=0.

If x,y € T and x does not communicate with y, then p"(x,y) = 0 for all n.

If x,y € T and x does communicate with y, then there is an m such that p™(x, y) > 0. And

p™ M (x,y) = p"(x, ¥y)p"(¥, ¥)-

D y) = P (X, =) (72)
n=1 n=1
=E D lx,y (7b)
n=1
=EN(y) (70)
=E(N)|T, < 00) - pyy + EN()|T, = 00)-(1-p,,) (7d)
R
=EyN(}’)ny (7e)

(The next-to-last line uses the Markov property.) Since y is transient, we know E,N(y) < oo,
so p"(x,y) — 0.

!1 said this incorrectly in lecture today. Duh!



Finally, suppose x € T and y € R. We know from the Decomposition Theorem that there is
some z € R such that x — z and p,, = 0. Since R is recurrent (because it is closed, irreducible,
and finite) we have p,, =1, and x — y as well. As in Eq. , we have

Px(Xn=y)=ZPx(Xn=y|Ty =k)-P(T, =k) (8)
k=1
For each k, we have
p"(x,y)=P.X,=y|T, =k) (9a)
=P,(Xk=Y) (9b)

for n > k, by the Markov property. SOE]

lirglop”(x,y) = lirgo P(X,=Y) (10a)
= 71'(_)/) (10b)
by Theorem 1.19, and
lim P,(X, =y) = n(y) Y P.(T, =k) (11a)
k=1
=7(Y) " Pyy- (11b)

The last thing we need is p,, = 1. Heuristically, this is because x € T, so eventually it reaches
a recurrent state z € R. Since R is closed and irreducible (and hence recurrent), p,, =1 for any

Z. SO Pyy = 1E| O]

Perron-Frobenius Theorem

Theorem. Let P be a stochastic matrix, and suppose all states are recurrent. Then

1) 1 is an eigenvalue of P, and it has a left eigenvector 1 with all nonnegative entries. For all
eigenvalues A of P, |A| < 1.

2) If P is irreducible, then the eigenvalue 1 has multiplicity 1, i.e., there is a unique (left)
eigenvector 1 such that m- P = 7, n(x) > 0 for all x, and >, _m(x) = 1. More generally, if
the chain has k closed irreducible blocks, then the eigenvalue 1 has multiplicity k, and there
are exactly k linearly independent stationary distributions.

2This is not rigorous, because I do not justify exchanging the limit with the infinite sum. But it hopefully gives
you an idea for why this is true — think about what the chain is doing!
3This can be made more airtight with a little effort.



3) If P is irreducible with period d, then P has exactly d eigenvalues A with |A| = 1, correspond-

ing to the roots of A = 1, i.e., they are the dth roots of unity. All other eigenvalues of P
have absolute value < 1.

4) If P is irreducible and aperiodic, then all eigenvalues A # 1 have |A| < 1.

5) If P is irreducible and satisfies detailed balance with respect to the (unique) stationary
distribution T, then all eigenvalues are real.

Notes:
1) See this snapshot of the Wikipedia page for more information.

2) Here are some examples and the associated Jupyter notebook.
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