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Today’s agenda:

- A summary of key theorems regarding stationary distributions

- The Perron-Frobenius Theorem.

- A sketch of the Convergence Theorem for 2-state chains using the Perron-Frobenius
Theorem.

Stationary distributions

First, there seems to be some confusion about basic definitions:

- A probability distribution on the state space S is stationary if for all x ∈ S,
∑

y∈S

π(y)p(y, x) = π(x). (1)

- A Markov chain satisfied detailed balance with respect to a probability distribution π on
the state space S if for all x , y ∈ S,

π(y)p(y, x) = π(x)p(x , y). (2)

Note that detailed balance is strictly stronger than stationarity: it implies stationarity but
stationarity does not imply detailed balance.

- A Markov chain is said to converge to equilibrium if

pn(x , y)→ π(y) (3)

as n→∞. Equivalently, a chain converges to equilibrium if for any initial distribution,

P(Xn = y)→ π(y). (4)

Here is a summary of key theorems from the text.
Some of the theorems can be stated a bit more generally without much effort. For example,

the assumptions of irreducibility and recurrence in Theorem 1.20 are not really necessary:
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Theorem (1.20’).

lim
n→∞

Nn(y)
n
=

� 1
Ey Ty

, Ty <∞
0, Ty =∞.

(5)

Proof. If Ty =∞ then Nn(y) = 0, so the conclusion is trivial.
If Ty <∞ (so the chain does reach y at some point), and y is recurrent, then the proof of

Theorem 1.20 applies. (Check it!)
Finally, if y is transient, then1

Py(N(y) =∞) = lim
k→∞

Py(N(y)¾ k) (6a)

= lim
k→∞

ρx yρ
k−1
y y (6b)

= 0. (6c)

So N(y)<∞ with probability 1. Since Nn(y)¶ N(y) for all n, the conclusion follows.

Another theorem that generalizes slightly is Theorem 1.19. To avoid complications, here I
just state a result for finite state spaces.

Theorem (1.19’). If |S|<∞ and S is a disjoint union T ∪ R, where T is the set of all transient
states and R is closed, irreducible, and aperiodic. Then pn(x , y)→ π(y) for all x , y ∈ S.

Proof. We go through the different cases:
If x , y ∈ R, then the result is just Theorem 1.19.
If x ∈ R and y ∈ T , then from the proof of the Decomposition Theorem we know that

pn(x , y) = 0.
If x , y ∈ T and x does not communicate with y , then pn(x , y) = 0 for all n.
If x , y ∈ T and x does communicate with y , then there is an m such that pm(x , y)> 0. And

pm+n(x , y)¾ pm(x , y)pn(y, y).

∞
∑

n=1

pn(x , y) =
∞
∑

n=1

Px(Xn = y) (7a)

= Ex

∞
∑

n=1

1(Xn=y) (7b)

= Ex N(y) (7c)

= Ex

�

N(y)
�

�Ty <∞
�

·ρx y + Ex

�

N(y)
�

�Ty =∞
�

︸ ︷︷ ︸

0

·(1−ρx y) (7d)

= Ey N(y) ·ρx y . (7e)

(The next-to-last line uses the Markov property.) Since y is transient, we know Ey N(y)<∞,
so pn(x , y)→ 0.

1I said this incorrectly in lecture today. Duh!
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Finally, suppose x ∈ T and y ∈ R. We know from the Decomposition Theorem that there is
some z ∈ R such that x → z and ρzx = 0. Since R is recurrent (because it is closed, irreducible,
and finite) we have ρz y = 1, and x → y as well. As in Eq. (7), we have

Px(Xn = y) =
∞
∑

k=1

Px(Xn = y|Ty = k) · Px(Ty = k) (8)

For each k, we have

pn(x , y) = Px(Xn = y|Ty = k) (9a)

= Py(Xn−k = y) (9b)

for n> k, by the Markov property. So2

lim
n→∞

pn(x , y) = lim
n→∞

Py(Xn = y) (10a)

= π(y) (10b)

by Theorem 1.19, and

lim
n→∞

Px(Xn = y) = π(y)
∞
∑

k=1

Px(Ty = k) (11a)

= π(y) ·ρx y . (11b)

The last thing we need is ρx y = 1. Heuristically, this is because x ∈ T , so eventually it reaches
a recurrent state z ∈ R. Since R is closed and irreducible (and hence recurrent), ρz y = 1 for any
z. So ρx y = 1.3

Perron-Frobenius Theorem

Theorem. Let P be a stochastic matrix, and suppose all states are recurrent. Then

1) 1 is an eigenvalue of P, and it has a left eigenvector π with all nonnegative entries. For all
eigenvalues λ of P, |λ|¶ 1.

2) If P is irreducible, then the eigenvalue 1 has multiplicity 1, i.e., there is a unique (left)
eigenvector π such that π · P = π, π(x)> 0 for all x, and

∑

x π(x) = 1. More generally, if
the chain has k closed irreducible blocks, then the eigenvalue 1 has multiplicity k, and there
are exactly k linearly independent stationary distributions.

2This is not rigorous, because I do not justify exchanging the limit with the infinite sum. But it hopefully gives
you an idea for why this is true – think about what the chain is doing!

3This can be made more airtight with a little effort.
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3) If P is irreducible with period d, then P has exactly d eigenvalues λ with |λ| = 1, correspond-
ing to the roots of λd = 1, i.e., they are the dth roots of unity. All other eigenvalues of P
have absolute value < 1.

4) If P is irreducible and aperiodic, then all eigenvalues λ 6= 1 have |λ|< 1.

5) If P is irreducible and satisfies detailed balance with respect to the (unique) stationary
distribution π, then all eigenvalues are real.

Notes:

1) See this snapshot of the Wikipedia page for more information.

2) Here are some examples and the associated Jupyter notebook.
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