Lecture 14 notes

klin@math.arizona.edu

March 3, 2020

Exit distributions

Today, we largely followed Sect. 1.9 of the text. There are many more nice examples there than I can possibly cover. Some comments:

1) In Theorem 1.28, the condition

$$
\begin{equation*}
P_{x}\left(V_{A} \wedge V_{B}<\infty\right)>0 \tag{1}
\end{equation*}
$$

is necessary sufficient to ensure that the system of equations

$$
\begin{equation*}
h(x)=\sum_{y \in S} p(x, y) h(y) \tag{2}
\end{equation*}
$$

with $h(a)=1$ for $a \in A$ and $h(b)=0$ for $b \in B$ has a unique solution. Note there always exists one solution, namely $h(x)=P_{x}\left(V_{A}<V_{B}\right)$, but Eq. (2) may be underdeterminied, as we saw in the simple example in class. The above condition thus guarantees $h(x)=$ $P_{x}\left(V_{A}<V_{B}\right)$.
2) The "heart" of the proof of Theorem 1.28, I think, is the formula

$$
\begin{equation*}
h(x)=E_{x} h\left(X_{T}\right) \tag{3}
\end{equation*}
$$

where $T=V_{A} \wedge V_{B}$. If you found the closely related

$$
\begin{equation*}
h(x)=E_{x} h\left(X_{n \wedge T}\right) \tag{4}
\end{equation*}
$$

mysterious, consider $n=2$: first, as pointed out in the text, we have

$$
\begin{align*}
h(x) & =E_{x} h\left(X_{1}\right) \tag{5a}\\
& =\sum_{y \in S} p(x, y) h(y) . \tag{5b}
\end{align*}
$$

Let us split the sum up according to whether $X_{1} \in C$ or $X_{1} \notin C$, obtaining

$$
\begin{equation*}
h(x)=\sum_{y \in C} p(x, y) h(y)+\sum_{y \in A \cup B} p(x, y) h(y) \tag{6}
\end{equation*}
$$

When $X_{1}=y \in C$, we can expand $h(y)$ again using Eq. (2), so that

$$
\begin{align*}
h(x) & =\sum_{y \in C} p(x, y) \sum_{z \in S} p(y, z) h(z)+\sum_{y \in A \cup B} p(x, y) h(y) \tag{7a}\\
& =\sum_{y \in C} \sum_{z \in S} p(x, y) p(y, z) h(z)+\sum_{y \in A \cup B} p(x, y) h(y) \tag{7b}\\
& =\sum_{y \in C} \sum_{z \in S} P\left(X_{0}=x, X_{1}=y, X_{2}=z\right) h(z)+\sum_{y \in A \cup B} P\left(X_{0}=x, X_{1}=y\right) h(y) . \tag{7c}
\end{align*}
$$

But the above is exactly $E_{x} h\left(X_{2 \wedge T}\right)$: the first term corresponds to when $X_{1} \in C$, so that $T \geqslant 2$, and the second term corresponds to when $X_{1} \notin C$, so that $T=1$. We can summarize the corresponding moves of X_{n} as: go two steps if possible, but if $X_{1} \in C$ already, then stop. This "stopped" Markov chain is exactly $X_{2 \wedge T}$, and the sum above gives $E_{x} h\left(X_{2 \wedge T}\right)$. Repeating this argument yields Eq. (4), whose limit as $n \rightarrow \infty$ gives Eq. (3).
3) The statement that

$$
\begin{equation*}
P_{x}\left(V_{A} \wedge V_{B}<\infty\right)>0 \tag{8}
\end{equation*}
$$

implies

$$
\begin{equation*}
P_{x}\left(V_{A} \wedge V_{B}<\infty\right)=1 \tag{9}
\end{equation*}
$$

can be seen as follows: Eq. (8) implies that for each x, there is an integer $n(x)$ such that $P_{x}\left(X_{n(x)} \in A \cup B\right)$. Let $n_{0}=\max \{n(x) \mid x \in C\}$, which is finite n_{0} because C is finite. Then we are guaranteed that for each $x, P_{x}\left(V_{T} \leqslant n_{0}\right)>0$, i.e., there is some chance of reaching A or B in $\leqslant n_{0}$ steps. Let $p_{0}=\min \left\{P_{x}\left(V_{A} \wedge V_{B} \leqslant n_{0}\right) \mid x \in C\right\}$. Since C is finite, $p_{0}>0$. For $x \in C$ and $m>0$, we have

$$
\begin{equation*}
P_{x}\left(V_{A} \wedge V_{B} \geqslant m n_{0}\right) \leqslant\left(1-p_{0}\right)^{m} \tag{10}
\end{equation*}
$$

because for the event on the left to occur, we have to manage to go $m n_{0}$ steps without hitting either A or B, and in $m n_{0}$ steps we get at least m tries, each with a probability p_{0} of succeeding. Letting $m \rightarrow \infty$, we get Eq. (9).

