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Exit distributions

Today, we largely followed Sect. 1.9 of the text. There are many more nice examples there than
I can possibly cover. Some comments:

1) In Theorem 1.28, the condition

Px(VA∧ VB <∞)> 0 (1)

is necessary sufficient to ensure that the system of equations

h(x) =
∑

y∈S

p(x , y)h(y) (2)

with h(a) = 1 for a ∈ A and h(b) = 0 for b ∈ B has a unique solution. Note there always
exists one solution, namely h(x) = Px(VA < VB), but Eq. (2) may be underdeterminied,
as we saw in the simple example in class. The above condition thus guarantees h(x) =
Px(VA < VB).

2) The “heart” of the proof of Theorem 1.28, I think, is the formula

h(x) = Exh(XT ) (3)

where T = VA∧ VB. If you found the closely related

h(x) = Exh(Xn∧T ) (4)

mysterious, consider n= 2: first, as pointed out in the text, we have

h(x) = Exh(X1) (5a)

=
∑

y∈S

p(x , y)h(y). (5b)
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Let us split the sum up according to whether X1 ∈ C or X1 /∈ C , obtaining

h(x) =
∑

y∈C

p(x , y)h(y) +
∑

y∈A∪B

p(x , y)h(y) (6)

When X1 = y ∈ C , we can expand h(y) again using Eq. (2), so that

h(x) =
∑

y∈C

p(x , y)
∑

z∈S

p(y, z)h(z) +
∑

y∈A∪B

p(x , y)h(y) (7a)

=
∑

y∈C

∑

z∈S

p(x , y)p(y, z)h(z) +
∑

y∈A∪B

p(x , y)h(y) (7b)

=
∑

y∈C

∑

z∈S

P(X0 = x , X1 = y, X2 = z)h(z) +
∑

y∈A∪B

P(X0 = x , X1 = y)h(y). (7c)

But the above is exactly Exh(X2∧T ): the first term corresponds to when X1 ∈ C , so that
T ¾ 2, and the second term corresponds to when X1 /∈ C , so that T = 1. We can summarize
the corresponding moves of Xn as: go two steps if possible, but if X1 ∈ C already, then
stop. This “stopped” Markov chain is exactly X2∧T , and the sum above gives Exh(X2∧T ).
Repeating this argument yields Eq. (4), whose limit as n→∞ gives Eq. (3).

3) The statement that
Px(VA∧ VB <∞)> 0 (8)

implies
Px(VA∧ VB <∞) = 1 (9)

can be seen as follows: Eq. (8) implies that for each x , there is an integer n(x) such that
Px(Xn(x) ∈ A∪ B). Let n0 =max{n(x)|x ∈ C}, which is finite n0 because C is finite. Then
we are guaranteed that for each x , Px(VT ¶ n0)> 0, i.e., there is some chance of reaching
A or B in ¶ n0 steps. Let p0 =min{Px(VA∧VB ¶ n0) | x ∈ C}. Since C is finite, p0 > 0. For
x ∈ C and m> 0, we have

Px(VA∧ VB ¾ mn0)¶ (1− p0)
m, (10)

because for the event on the left to occur, we have to manage to go mn0 steps without
hitting either A or B, and in mn0 steps we get at least m tries, each with a probability p0

of succeeding. Letting m→∞, we get Eq. (9).
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