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Final exam. Today we discussed the final exam, which will be comprehensive.
You will be responsible all the topics that were on the midterm (basically most
of Ch. 1), as well as the sections of Ch. 2 we covered (Homework 9, 10, and
11) and the material regarding continuous time Markov chains on Homework
12. I will send out more detailed information separately.

Random topics (pun intended). I asked if any of you had questions. We
briefly touched on a few topics. I want to give you references in case any of
you are interested.

- Martingales. Ch. 5 in our textbook discusses basic properties of martin-
gales, and will hopefully give you a feel for why it’s useful. This material
is used in Ch. 6 on mathematical finance. Those of you interested are
encouraged to flip through those pages. I’m happy to answer any math1

questions you have!

- Brownian motion. One of you asked about Brownian motion and appli-
cations to finance. Again, I don’t know much about finance. I do know
a little bit about the physical phenomenon of Brownian motion and its
mathematical model, called the “Wiener process.” These models are ex-
amples of Gaussian processes, stochastic processes X t for which the joint
distributions X t1

, · · · , X tn
are Gaussian for all n and t1 < · · ·< tn.

Those of you who are interested can read up on the basics of Gaussian
processes in Ch. 4–6 of the supplemental text by Hoel, Port, and Stone.
Those of you with a little basic physics background may enjoy Investiga-
tions on the Theory of the Brownian Movement by Einstein. (These are
English translations of his 1905 papers on Brownian motion.)

1I know next to nothing about finance.
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- Metropolis algorithm. This is an example of a “Markov chain Monte Carlo”
algorithm. One of its main applications for estimating expectation values.
For example, suppose one has a (very large finite or countably infinite)
set S, a probability distribution π on S, and a function ϕ, and wants to
estimate the expected value

∑

x∈S

ϕ(x)π(x). (1)

If S is large and/or if the function ϕ is computationally expensive to
evaluate (for example, imagine S being a large collection of images, each
x being one image, and ϕ(x) being a metric measuring the performance
of a neural network deciding whether image x contains a cat), then it
may be impractical to evaluate the sum exactly. One strategy would be
to design a Markov chain Xn that is easy to simulate and has π as its
stationary distribution. Then

1
N

N
∑

n=1

ϕ(Xn) (2)

would provide a reasonable approximation of Eq. (1) for large N .

If you’re interested in this topic, there’s a short section (Sect. 1.5.2)
explaining more of the mathematical foundation. For a practical guide,
search for “Introduction to Monte Carlo methods” by David MacKay.
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