
Glossary of Technical Terms

K – the aspiration level, i.e. a learner continues to move until 
she reaches a node at the same time as K-1 other 
learners.

edge – a path that can be used in both directions between  
exactly two nodes.

adjacent – two nodes are said to be adjacent if they are 
connected via an edge.

convergence – the case when satisfaction of the K-value at 
each node leads to all learners occupying the 
same node.

N – Total number of nodes on the graph
n – for each node, n ≤ # adjacent nodes ≤ 2*n
L – the total number of learners on the graph
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Figure 1: a graph and its matrix representation

Methodology

• The languages are modeled as nodes on a graph.
• A matrix of ones and zeros is constructed to represent the graph with N

nodes, each with its number of adjacent nodes between n and 2*n.
• Each row of the matrix represents the corresponding node.  An entry of 

one in position (i,j) indicates that nodes i and j are connected.  An entry 
of zero indicates the two nodes are not connected.

Numerical Setup
• From this matrix a list of adjacent nodes is created for each node. These 

lists are stored as rows in a new matrix where the row number 
corresponds to the node number and the entries in the row are the 
adjacent node numbers.

• A vector is created where the indices of the vector indicate the node 
numbers and the entries indicate the number of learners at that node.

• Initially each of the L learners is placed at an empty node, that is to say 
that no two learners occupy the same node to start with.

Evolution of the Numerical Simulation
• In one timestep, or iteration, each learner who needs to be moved is 

moved exactly once. 
• Each learner can only move to a node adjacent to her current node. This 

adjacent node is randomly chosen from the list of adjacent nodes 
(figure 2) for her current node.

• Each learner continues to move until she arrives at a node at the same 
timestep as at least K – 1 other learners, or until she arrives at a node 
with an existing cluster of K or more learners.

• The simulation continues until the K value is satisfied at each node; that 
is, each node has either 0 or at least K learners.

Output of the Numerical Simulation
• When the point is reached where the K value is satisfied at each node, 

the vector containing the number of learners at each node is checked for 
convergence in the following manner:  The number of non-zero entries 
in the vector is determined.  If this number is equal to one, there is 
convergence.  If the number is greater than one, there are two or more 
nodes that each have K or more learners; thus no convergence.

Results

Keeping L = 50 and n = 25  as N/L ∞ the probability of convergence
increases towards the limit of 1.0

Again, keeping L = 50 we compare the number of iterations to N / L.  This 
was done for three significantly different values of n and plotted on the 
same graph for comparison.
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Figure 2: the matrix which stores the list of 
adjacent nodes for each node (corresponding 
to figure 1 in this case).  Highlighted area is 
actual matrix.
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Project Description

• Often children learn to speak the language of their peers as opposed 
that of their parents.

• It is thought that a model where the learners randomly move about a 
graph consisting of nodes each of which represents a distinct language, 
may better model this learning than the traditional teacher-student 
model. [1]

Scientific Challenges

• Looking at this alternative model strictly from a mathematical 
standpoint it is interesting to explore which K values lead to 
convergence.

• Understanding the dynamics of a model in which learners move
from node to node on a graph. In particular, understand why 
convergence can be reached with a very low K value. 

Potential Applications

• As mentioned in [2] children in a Nicaraguan school for the deaf
developed their own sign language completely aside from what was
being taught to them at school by their teachers.  It may be possible to 
use this model to understand such an occurrence.



Analyzing the Red Grouse – T. tenuis System
Denise Brown     Ryan Humphrey     Jessica Ryder     David Sonenschein

Results

Fig. 1.  Our solution to the six-equation model,
plotted in MATLAB, p = 0.[ ]
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Project Description

• England’s red grouse populations undergo periodic population 
cycles.
• Hudson et al. hypothesize that the fluctuations are due to the
presence of a parasite [2].
• Modeling the grouse-parasite system allows us to understand 
the cyclic behavior and determine a possible solution to stabilize 
the fluctuations.
• Our goals are to understand the authors’ model and to 
reproduce their numerical results.

Scientific Challenges

• Learning to develop an analytical model to describe a complex 
real-life problem

Potential Applications

• Predict the number of hosts which must be treated to prevent 
population crashes
• Model other predator-prey or host-parasite systems

Methodology

• Study mathematical concepts of predator prey systems:  
stability and phase plane analysis
• Examine the authors’ preliminary models to better understand 
the parasite’s effect on grouse mortality and fecundity
• Understand and numerically analyze a 6-dimensional host-
parasite model

Glossary of Technical Terms

Trophic interactions: Interactions in a biological system 
involving eating or being eaten [2].
Hypobiosis: A period of arrested development between the 
larval and adult stages of a parasite’s life [1].
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• Our results do not agree with Hudson et. al’s when using 
the same parameters
• The total grouse population increases over time because 
the numbers of untreated hosts and chicks are both 
increasing
• There is an initial increase in the numbers of free-living 
parasites and parasites in untreated hosts, but both die off 
because the number of grouse is still not sufficient to support 
the parasite population 
• Hudson et al.’s work shows that treating approximately 
20% of total grouse is sufficient to prevent population crashes
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Model

(i)                  (ii)                (iii)
(i)   The number of untreated chicks that become untreated adult hosts.
(ii)   A combination of the death of the untreated hosts and the decrease in fecundity

and survival rates of the untreated host due to population density.
(iii) The deaths of untreated hosts caused by parasites.

(i)                (ii)           (iii)
(i)   The birth of chicks given grouse fecundity .
(ii)  The reduction in grouse fecundity due to the parasite.
(iii) The death rate of the grouse and the proportion of chicks that reach adulthood.

(i)                           (ii)           (iii)
(i)   The growth of free-living parasites into adults.
(ii)  This term is similar to the second term in (4) below, but takes into account parasite

deaths in treated hosts due to the anthelmintic, where P = PT + PU.
(iii) The parasite interaction inside the host (competition between parasites).

(i)              (ii)                  (iii)
(i)   The growth of free-living parasites into adults.
(ii)  This term is similar to the second term in (IV) below, but takes into account parasite

deaths in treated hosts.
(iii) The parasite interaction inside the host (competition between parasites).

(i)                    (ii)
(i)  The birth rate of the parasite.
(ii)  A combination of the death rate and transmission rate of the free-living parasites.

(i)              (ii)                    (iii)
(i)   The number of treated chicks that become treated adult hosts.
(ii)  A combination of the death of the treated hosts and the decrease in fecundity

and survival rates of the treated host due to population density.
(iii) Deaths of treated hosts caused by parasites.



Glossary of Technical Terms
SIR: The Susceptible-Infectious-Recovered model for 
studying populations with disease.
DFE: The Disease Free Equilibrium.  The fixed point for the 
system at which the population is free of disease [2].
R0: The basic reproduction number.  The average number of 
secondary infections resulting from having a primary infection 
introduced into a completely susceptible population.

Project Description
• West Nile virus is a disease spreading globally and emerging locally.
• An extended SIR model is needed to describe the spread of the virus 

among mosquito and bird populations.[1][2]
• The goal of the project is to see how modeling techniques are 

implemented in current epidemiological research.

Scientific Challenges
• The project involves a dual species dependence, between vectors 

(mosquitoes) and hosts (birds), therefore the dimension of the system is 
large and thus more difficult to conceptualize.

• The model utilizes a new approach, based on current analytical 
research, to help determine the necessary indicators to control mosquito 
populations

Potential Applications
• Modeling the virus allows prediction of how the virus will affect different 

populations in different geographical regions.
• The model will also help in determining how best to prevent serious 

public health consequences.

Mathematical Epidemiology:
Modeling the Spread of the West Nile Virus

Team Members:
Joe Aldridge, Optical Sciences and Engineering
Katie Moore, Astronomy
Shaheed A. Shabazz, Mathematics and Mechanical Engineering

A compartmental extended SIR model for West Nile cross-infection between 
birds and mosquitoes reproduced from [3]. This compartmental diagram is 
used to develop the model’s system of differential equations.

Methodology
1. The team selected an appropriate model (system of differential 

equations) which accurately describes the cross-infection of the West 
Nile virus between birds and mosquitoes. The model consists of eight 
compartments defined by the following:
a) Susceptible — describes the segment of the bird and mosquito 

populations that are currently susceptible to the virus
b) Infectious — describes the segment of the bird and mosquito 

populations that are currently infected with the virus and able to 
infect others

c) Recovered — describes the segment of the bird population that has 
recovered from the virus  

d) Dead — describes the segment of the bird population that died from 
the virus

e) Larval — describes the mosquito population in its larval stage of 
development

f) Exposed — describes the segment of mosquito population that has 
been exposed to the virus, but not infected with the virus

2. To avoid complexity, the team wrote the system of equations in 
dimensionless form, to eliminate non-essential parameters.

3. The team determined the DFE solution set to be as follows:
a) The bird equilibrium values are determined to be 

(sb0,ib0,rb0,xb0) = (1,0,0,0).  This reflects that all of the birds are 
susceptible, and none have been in contact with the disease.

b)  The mosquito equilibrium values are determined to be
(lm0,sm0,em0, im0) = (φm0sm0/η+µl,sm0,0,0).  The value lm0 is 
determined by setting the larval and susceptible mosquito differential 
equations to zero, substituting known parameter and equilibrium 
values, and solving.  The value sm0 is determined by first determining 
R0, setting it equal to unity, and solving.

4. To observe the behavior, the team used parameter values to simulate 
the model’s progression with time.

Results
1. We determined an expression for R0, which indicates whether a disease 

will become an epidemic.

2. The initial proportion of susceptible mosquitoes indicates the resulting 
level of invasiveness.

3. Killing mosquitoes slows the spread of West Nile; killing birds speeds it 
up.

References
[1] Brauer, F. &  Castillo-Chavez, C.  2001 Mathematical 

Models in Population Biology and Epidemiology.  
Springer.

[2] van den Driessche, P. & Watmough, J. 2002 Reproduction 
Numbers and Sub-Threshold Endemic Equilibria for 
Compartmental Models of Disease Transmission.  
Math. Biosci. 180, 29-48.

[3] Wonham, M.J.,  de-Camino-Beck, T. &  Lewis,  M.A.  2004 
An Epidemiological Model for West Nile Virus: Invasion 
Analysis and Control Applications. Proc. Royal Society 
of London 271, 501-507.

Acknowledgments
This project was mentored by Suzanne Robertson, whose help 
is acknowledged with great appreciation.  Support from a 
University of Arizona TRIF (Technology Research Initiative 
Fund) grant to J. Lega is also gratefully acknowledged.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Initial Mosquito Abundance ( sm0 )

Fi
na

l P
ro

po
rti

on
 o

f
S

us
ce

pt
ib

le
 B

ird
s 

( s
b 

)

Relationship Between Final Susceptible Crow Population
and Initial Mosquito Abundance

im0 = .01 , t = 15

im0 = .001, t = 15

im0 = .01, t → ∞

Case of Moderate Outbreak

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time

pr
op

or
tio

n 
of

 b
ird

s

Dead

0 5 10 15
0

0.05

0.1

0.15

0.2

time

re
la

tiv
e 

nu
m

be
r o

f m
os

qu
ito

es

Infectious
Exposed

0 5 10 15
0

2

4

6

8

10

12

14

16

time

re
la

tiv
e 

nu
m

be
r o

f m
os

qu
ito

es

Larval
Susceptible

Infectious

[sb ib rb xb lm sm em im] = [1 0 0 0 lm0 sm0 0 0.01], where sm0 = 7.5 and 
lm0 depends on sm0 as lm0 = φmsm0/(η+μl). 

Infectious

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

pr
op

or
tio

n 
of

 b
ird

s

Susceptible
Infected

Susceptible
Dead



Glossary of Technical Terms

RSA: Random Sequential Adsorption: process by which 
particles are randomly adsorbed in a sequential fashion on an 
infinite line with no overlap.
Adsorption: The adhesion in an extremely thin layer of 
molecules to the surface of a solid body with which it is in 
contact.

Project Description

• Our model investigates how the gap size distribution of cars parked in 
parallel relates to the process of RSA.

• Our model utilizes the everyday concept of car parking to illustrate how 
the process of RSA occurs at the microscopic or macroscopic level.

• Model A of [1] simulates RSA with the modification of requiring a fixed 
amount of space for maneuvering of vehicles into parking spots.

• Model B of [1] simulates car parking using RSA with the additional 
condition that after adsorption, a car will pull forward to the next 
nearest car with a given probability p.

• Goals:
Reproduce models from [1].
Collect empirical data and compare to results of models in [1].
Use computer simulation of car parking and compare to results of
models in [1] and collected empirical data.

Scientific Challenges

• Use car parking model to understand the application of RSA as a way to 
model protein adsorption on a cell membrane.

Potential Applications

• Provide insight for city planning and development. 

Parallel Parking and RSA

Team Members:

Matt Behrens
Anita Lee
Matt Levin
Michael Winslow

Empirical data collected from the streets of Tucson, AZ.

Methodology

1. Because RSA alone is insufficient to model car parking, we reproduced    
the Model A from [1] which incorporates maneuvering room.    

2. Model A of [1] failed to fit empirical data, so we reproduced Model B 
from [1] that incorporates a probability that a car will pull forward after 
parking. 

3. We created a computer simulation to generate additional numerical data 
to compare to empirical data and gap distributions generated by models 
A and B of [1].

4. We collected over 250 points of empirical data to compare with models 
A and B from [1], and also our computer simulation.

Results

1. Both computer simulated data and empirical data plotted as 
relative frequency corresponds to [1].

2. Model A [1] did not correctly model gap size distribution of 
parked cars.

3. Model B, which incorporates cars pulling forward after selecting
a spot correctly models the empirical data.
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The computer simulation of modified RSA with a maneuvering room of 0.2 
with a superimposed graph of Model A using equations from [1].  The 
superimposed graph was plotted using [4]. 

Equations used to derive and model RSA from [3].

Model A of [1] with Epsilon = 0.2
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Glossary of Technical Terms
Seek Latency: time to position heads over cylinder
Rotational Latency: additional time for platters to rotate so 
that the request is under the head
Queue Delay: Delay caused by the formation of a line when 
multiple requests for data are sent to the hard drive.
Starvation: When seeks are arranged such that one is never 
serviced due to its location on the drive.

Project Description

• Hard Drives are one of the slowest components of computer systems.
• Hard Drives process information as subsequent requests sent by the 

operating system. A request is sent and will be processed depending on 
the order in which it was received. As multiple requests bombard the 
hard drive, a line of requests, or a queue is formed.

• The average delay time associated with the hard drive consists of the 
seek latency, rotational latency, and the queue delay.

• Since the seek latency and rotational latency are mechanical constraints 
that cannot be reduced any further we must optimize the queue delay. 

• We need a model to help gauge a drive’s effectiveness which will mimic 
the algorithm designed to minimize queue delay implemented by 
Seagate.

• We cannot however look at the actual algorithm because it is proprietary 
to Seagate. Thus we must formulate our own model to represent the 
algorithm.  This algorithm is known as RPO or Rotational Position 
Optimization. 

Scientific Challenges

• The RPO algorithm is an interesting problem, it addresses an active area 
of research investigating technology that will allow a computer to run 
faster and be more efficient.  A model has not yet been developed for 
the RPO algorithm.

Potential Applications

• We will be able to use this model to analyze the effectiveness of certain 
hard drives based on their types of applications.

RPO: Rotational Position Optimization
Team Members:

Daniel Norwood
Joseph Ortiz
Chris Summitt
Dr. Olga Yiparaki

Figure 2: the Reachable area on a platter given a particular start position.

Methodology

1. Built a relationship with our representative from IBM and actually 
research our problem.

2. Acquired Data from IBM DS8000 systems.

3. Analyzed data from two different types of cases, single stream and 
multi-stream, and formulated models which described the average delay 
time for both cases. In the case of the single stream, the data was 
processed in the order it was received, while in the multi stream case, 
the RPO algorithm was implemented.

Results

1. We formulated a theoretical model using the Seagate manufacturing 
specifications to predict the average time delay. For the case were the 
data was sent in at a single stream which didn’t implement the RPO, we 
obtained the following expression.

2. Using the data from the multi-stream case, as well as the theoretical 
model which predicted the average delay for a hard drive not 
implementing  RPO, we constructed a model to predict the delay on a 
hard drive with RPO enabled. The queuing depth for the specific hard 
drives was 20, using this as a limit, our theoretical model transformed 
into the following model which takes into account RPO. The model with 
no queue is the theoretical model we formulated earlier.

3. We split our model to handle each case, i.e., the case with one access 
from the queue in the RA versus the case with two accesses in the RA. 
This gives us:

4. Where R is the outer radius of the disk, ρ is the inner radius, Q is the 
queue depth, L is rotational latency, s is seek latency, and f is a cutoff 
value to stop starvation.

5. We have found that the values of Q=20, R=3.5, ρ=.5, L=4, s=3.8, f=13 
fit our model. The first 5 values came from hardware specifications, the f 
value is our best estimation.
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Distribution for multi-stream with RPO.

Figure 1: an example of a  Hard Drive’s standard internal components.
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Numerical Simulation of (4) and (5)Project Description
• To understand the inner workings of macroscopic traffic flow model with 

the presence of on-ramps.
• To identify phases of macroscopic model to derive origin of equations.
• To understand how dynamic changes in traffic environments due to

increase of flux and density.
• To comprehend equations and phase diagrams that are used in previous 

traffic models (ex. Continuity and Navier-Stokes equations).  [2]

Scientific Challenges
• To develop accurate estimations for real world traffic problems

Potential Applications
• To develop new routes, ease congestion, minimize accidents and 

optimize flow on highways

Traffic Flow
Team Members:

Khoa Han- Electrical Engineering and Mathematics
Gabriel Leake- Mathematics
Azer Novo- Electrical Engineering and Mathematics
Micheal Stoltenberg- Engineering Mathematics and Engineering Physics

Equations used in Traffic models

Simulation Summary

1. Vehicle behavior is displayed when the flux of vehicles entering from the 
on-ramp is below the stability line (highlighted in black) leading out of 
point 1 (P1).  

2. When the density of vehicles in the system is very high, acceleration 
spirals downward to zero while velocity approaches the average velocity.  
This is given as 54 km/hr.  
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Figure 1: velocity vs. acceleration

Analysis of Regions

Region 1: Vehicles accelerate to average velocity (P2).

Region 2: Density of vehicles is low so vehicles accelerate 
away from average velocity, increasing with time.  

Region 3: Unphysical scenario corresponding to simultaneous 
existence of high density and high velocity. 

Region 4: Vehicles moving at high velocities decelerate to P2.
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Methodology

1. The first traffic model was developed in 1950’s by James Lighthill and 
Gerald Whitham [1].

2. The macroscopic model was examined after careful research of traffic flow 
models.

3. This continuity equation was analyzed taking into account the presence of 
a source.
• In the absence of an on-ramp the external flux, qin(t), through the on-

ramp is equal to zero. In other words, the highway will be continuous 
(i.e., there are no on-ramps or off-ramps).

• In the presence of an on-ramp the external flux is now included in the 
analysis (2). describes the spatial distribution of cars and is a 
Gaussian distribution with a mean of zero [2].

4. The Navier-Stokes equation (3) for one dimensional pipe flow was used to 
model traffic flow.
• Consider water flowing through a pipe. The water enters and exits, if a 

branch exists, there will be an influx of fluid mixing into the system. 
The fluid in the main branch will then have to adjust for the added 
density. The same principle applies to traffic flow on a highway, which 
is why the authors of [2] used Navier-Stokes equation in order to 
analyze the highway system.  

5. The Navier-Stokes equation was reduced into two systems of differential 
equations. Data was taken from [2] and plotted in an ODE Simulator 
(PPLANE [4]). A plot of velocity vs. acceleration is displayed in figure 1. 

6. The dimensions of the variables and parameters used in the model are 
shown in table 1. (Note:   is the viscosity of the system,   is the sum of 
internal forces, and P is pressure)
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