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Introduction of a canonical system

A canonical system is a family of differential equations of the form

Ju′(x) = zH(x)u(x), z ∈ C. (1)

J =

(
0 −1
1 0

)
and H(x) is a 2× 2 positive semidefinite matrix.

Assume H does not vanish on any open interval.

Consider the Hilbert space

L2(H,R+) =
{
f(x) =

(
f1(x)
f2(x)

)
: ‖f‖ <∞

}
with inner product

〈
f, g
〉

=

∫ ∞
0

f(x)∗H(x)g(x)dx
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Symmetric relation on any Hilbert space H

A linear relation R =
{

(f, g) : f, g ∈ H
}

on H is a subspace of H2.

Domain: D(R) = {f ∈ H : (f, g) ∈ R}
Range: R(R) = {g ∈ H : (f, g) ∈ R}
Inverse: R−1 = {(g, f) : (f, g) ∈ R}
Adjoint of R in H2:
R∗ = {(h, k) ∈ H2 : 〈f, k〉 = 〈g, h〉 for all (f, g) ∈ R}.
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A linear relation S is called symmetric if S ⊂ S∗ and self-adjoint if
S = S∗.
Goal: Discuss the spectrum of such self adjoint relation. Let
(z −R) = {(f, zf − g) : (f, g) ∈ R}, Rz = R(z −R) and
N(R, z) = {f : (f, zf) ∈ R}. Observe that,

N(R∗, z̄) = R⊥z .

The regularity domain of R is the set

Γ(R) =
{
z ∈ C : ∃C(z) > 0 : ‖(zf − g)‖ ≥ C(z)‖f‖, ∀(f, g) ∈ R

}
.
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Γ(R) satisfies the following properties:

1 z ∈ Γ(R) if and only if (z −R)−1 is a bounded linear operator
on D(R).

2 If R is symmetric, then C− R ⊂ Γ(R).

3 Γ(R) is open.

β(R, z) = dimR⊥z is called the defect index of R and z.

Theorem 1

The defect index β(R, z) is constant on each connected subset of
Γ(R). If R is symmetric, then the defect index is constant in the
upper and lower half-planes.
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For z ∈ C+,m = β(R, z) and for w ∈ C−, n = β(R, w) are written
as a pair (m,n), called the defect indices of R.

Theorem 2

Let R be a closed symmetric relation on a Hilbert space H with
defect indices (m,n) then

1 R possess self-adjoint extension if and only if its defect indices
are equal(m = n).

2 A symmetric extension R′ of R is self-adjoint if and only if R′ is
an m−dimensional extension of R .
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The resolvent set for a closed relation R is a set

ρ(R) =
{
z ∈ C : ∃ T ∈ B(H) : R = {(Tf, zTf − f) : f ∈ H}

}
and the spectrum of R is

σ(R) = C− ρ(R)

We call S(R) = C− Γ(R) the spectral kernel of R.
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Theorem 3

Let T is a self-adjoint relation on H. Suppose z ∈ Γ(T ) and
T = (T − z)−1 then

1 S(T ) = σ(T )

2 If λ ∈ Γ(T ) then (z − 1
λ
) ∈ Γ(T ).

3 If λ ∈ S(T ) then 1
z−λ ∈ S(T ).

4 S(T ) ⊂ σ(T ).
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Main Theorem
Application of the Main Theorem

Relation induced by a Canonical System on

L2(H,R+)

Consider the maximal relation R on L2(H,R+) given by

R = {(f, g) ∈
(
L2(H,R+)

)2
: f ∈ AC, Jf ′ = Hg}.

The adjoint relation R0 = R∗, called as minimal relation is defined by

R0 = {(f, g) ∈
(
L2(H,R+)

)2
: 〈g, h〉 = 〈f, k〉 for all (h, k) ∈ R}

The minimal relation R0 is symmetric: R0 ⊂ R∗0 = R and is given by

R0 = {(f, g) ∈ R : f(0+) = 0, lim
x→∞

f ∗(x)Jh(x) = 0, (h, k) ∈ R}.
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Main Theorem
Application of the Main Theorem

β(R0) is equal to the number of linearly independent solutions
of the system 1 of whose class lie in L2(H,R+).

It follows that R0 has equal defect indices, by Theorem 2 it has a
self-adjoint extension say T .
Note: the limit circle case of the system 1. That implies for any
z ∈ C+ the deficiency indices of R0 are (2, 2). Suppose
p ∈ D(R) rD(R0) such that lim

x→∞
p(x)∗Jp(x) = 0. Then the

relation

T α,p = {(f, g) ∈ R : f1(0) sinα + f2(0, z) cosα = 0

and lim
x→∞

f(x)∗Jp(x) = 0}.

defines a self-adjoint relation.
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Main Theorem
Application of the Main Theorem

We next discuss the spectrum of T α,p. Let u(x, z) and v(x, z) be two
linearly independent solutions of the system 1 with

u(0, z) =

(
1
0

)
, v(0, z) =

(
0
1

)
.

Let z ∈ C+ and write f(x, z) = u(x, z) +m(z)v(x, z) ∈ L2(H,R+)

satisfying lim
x→∞

f(x, z)∗JP (x) = 0. Let T (x, z) =

(
u1 v1
u2 v2

)
and

wα(x, z) = 1
sinα+m(z) cosα

T (x, z)

(
cosα
− sinα

)
.

Keshav Acharya University of Oklahoma Spectral Theory of a Canonical System



Introduction
Symmetric relation on any Hilbert space
Relation induced by a Canonical System

References

Main Theorem
Application of the Main Theorem

Let z ∈ ρ(T α,p) then the resolvent operator (T α,p − z)−1 is given by

(T α,p − z)−1h(x) =

∫ ∞
0

G(x, t, z)H(t)h(t)dt

where G(x, t, z) =

{
f(x, z)wα(t, z̄)∗ if 0 < t ≤ x
wα(t, z̄)f(x, z̄) if x < t ≤ ∞

This is unitarily equivalent with the integral operator (Hilbert
Schmidt) L on L2(I,R+) given by

(Lg)(x) =

∫ ∞
0

L(x, t)g(t)dt, L(x, t) = H
1
2 (x)G(x, t, z)H

1
2 (t).

Hence it has only discrete spectrum consisting of eigenvalues and
possibly zero. By Theorem 3, T α,p has discrete spectrum consisting
of eigenvalues.
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Main Theorem
Application of the Main Theorem

Theorem 4

The defect index β(R0, z) = dim R⊥0z = dim N(R, z̄) of R0 is
constant on C.

Proof.
Since R0 is a symmetric relation, by Theorem 1 the defect index
β(R0, z) is constant on upper and lower half planes. Suppose
β(R0, λ) < 2 for some λ ∈ R. Since Γ(R0) is open, λ /∈ Γ(R0) and
hence λ ∈ S(R0). Since for each α ∈ (0, π], T α,p is self-adjoint
extension of R0, λ ∈ S(T α,p) = σ(T α,p). Since σ(T α,p) consists of
only eigenvalues, λ is an eigenvalue for all boundary conditions α at
0. However, this is impossible unless β(R0, λ) = 2. This completes
the proof.
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Main Theorem
Application of the Main Theorem

Theorem 5
Consider the canonical system 1 with traceH ≡ 1 then it prevails
limit point case.

Proof.
Suppose it prevails the limit circle case. That means all solutions of 1
are in L2(H,R+). By Theorem 4, for 0 ∈ R, dimN(R, 0) = 2. In

particular, 0 is an eigenvalue and u(x) =

(
1
0

)
and v(x) =

(
0
1

)
are

the eigenfunctions of the relation R in L2(H,R+) . However,∫ ∞
0

u(x)∗H(x)u(x)dx+

∫ ∞
0

v(x)∗H(x)v(x)dx =∫ ∞
0

traceH(x)dx =∞. This is a contradiction. It follows that the

canonical system 1 has limit point case.
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Thank You!
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