Spectral Theory of a Canonical System

Keshav Acharya University of Oklahoma

March 11, 2012

Keshav Acharya University of Oklahoma Spectral Theory of a Canonical System

Introduction

Symmetric relation on any Hilbert space Relation induced by a Canonical System References

Introduction of a canonical system

A canonical system is a family of differential equations of the form

$$Ju'(x) = zH(x)u(x), \quad z \in \mathbb{C}.$$
 (1)

 $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } H(x) \text{ is a } 2 \times 2 \text{ positive semidefinite matrix.}$ Assume H does not vanish on any open interval.

Consider the Hilbert space

ν

$$L^{2}(H, \mathbb{R}_{+}) = \left\{ f(x) = \left(\begin{array}{c} f_{1}(x) \\ f_{2}(x) \end{array} \right) : \|f\| < \infty \right\}$$

with inner product $\left\langle f, g \right\rangle = \int_{0}^{\infty} f(x)^{*} H(x) g(x) dx$

Symmetric relation on any Hilbert space \mathcal{H}

A linear relation $\mathcal{R} = \{(f,g) : f,g \in \mathcal{H}\}$ on \mathcal{H} is a subspace of \mathcal{H}^2 . Domain: $D(\mathcal{R}) = \{f \in \mathcal{H} : (f,g) \in \mathcal{R}\}$ Range: $R(\mathcal{R}) = \{g \in \mathcal{H} : (f,g) \in \mathcal{R}\}$ Inverse: $\mathcal{R}^{-1} = \{(g,f) : (f,g) \in \mathcal{R}\}$ Adjoint of \mathcal{R} in \mathcal{H}^2 : $\mathcal{R}^* = \{(h,k) \in \mathcal{H}^2 : \langle f,k \rangle = \langle g,h \rangle$ for all $(f,g) \in \mathcal{R}\}$.

A linear relation S is called symmetric if $S \subset S^*$ and self-adjoint if $S = S^*$.

Goal: Discuss the spectrum of such self adjoint relation. Let $(z - \mathcal{R}) = \{(f, zf - g) : (f, g) \in \mathcal{R}\}, \mathcal{R}_z = R(z - \mathcal{R}) \text{ and } N(\mathcal{R}, z) = \{f : (f, zf) \in \mathcal{R}\}.$ Observe that,

$$N(\mathcal{R}^*, \bar{z}) = \mathcal{R}_z^\perp.$$

The regularity domain of \mathcal{R} is the set

$$\Gamma(\mathcal{R}) = \Big\{ z \in \mathbb{C} : \exists C(z) > 0 : \|(zf - g)\| \ge C(z) \|f\|, \, \forall (f,g) \in \mathcal{R} \Big\}.$$

 $\Gamma(\mathcal{R})$ satisfies the following properties:

- z ∈ Γ(R) if and only if (z − R)⁻¹ is a bounded linear operator on D(R).
- **2** If \mathcal{R} is symmetric, then $\mathbb{C} \mathbb{R} \subset \Gamma(\mathcal{R})$.
- $\Gamma(\mathcal{R})$ is open.

 $\beta(\mathcal{R},z) = \dim \mathcal{R}_z^\perp \text{ is called the defect index of } \mathcal{R} \text{ and } z.$

Theorem 1

The defect index $\beta(\mathcal{R}, z)$ is constant on each connected subset of $\Gamma(\mathcal{R})$. If \mathcal{R} is symmetric, then the defect index is constant in the upper and lower half-planes.

For $z \in \mathbb{C}^+$, $m = \beta(\mathcal{R}, z)$ and for $w \in \mathbb{C}^-$, $n = \beta(\mathcal{R}, w)$ are written as a pair (m, n), called the defect indices of \mathcal{R} .

Theorem 2

Let ${\cal R}$ be a closed symmetric relation on a Hilbert space ${\cal H}$ with defect indices (m,n) then

- \mathcal{R} possess self-adjoint extension if and only if its defect indices are equal(m = n).
- **2** A symmetric extension \mathcal{R}' of \mathcal{R} is self-adjoint if and only if \mathcal{R}' is an m-dimensional extension of \mathcal{R} .

The resolvent set for a closed relation \mathcal{R} is a set

$$\rho(\mathcal{R}) = \left\{ z \in \mathbb{C} : \exists T \in B(\mathcal{H}) : \mathcal{R} = \{ (Tf, zTf - f) : f \in \mathcal{H} \} \right\}$$

and the spectrum of \mathcal{R} is

$$\sigma(\mathcal{R}) = \mathbb{C} - \rho(\mathcal{R})$$

We call $S(\mathcal{R}) = \mathbb{C} - \Gamma(\mathcal{R})$ the spectral kernel of \mathcal{R} .

Theorem 3

Let T is a self-adjoint relation on H. Suppose $z \in \Gamma(T)$ and $T = (T - z)^{-1}$ then

- $(\mathbf{\mathcal{T}}) = \sigma(\mathbf{\mathcal{T}})$
- 2 If $\lambda \in \Gamma(T)$ then $(z \frac{1}{\lambda}) \in \Gamma(T)$.

3 If
$$\lambda \in S(\mathcal{T})$$
 then $\frac{1}{z-\lambda} \in S(T)$.

 $(\mathbf{S}(T) \subset \sigma(T).$

Main Theorem Application of the Main Theorem

Relation induced by a Canonical System on $L^2(H,\mathbb{R}_+)$

Consider the maximal relation $\mathcal R$ on $L^2(H,\mathbb R_+)$ given by

$$\mathcal{R} = \{ (f,g) \in \left(L^2(H,\mathbb{R}_+) \right)^2 : f \in AC, Jf' = Hg \}.$$

The adjoint relation $\mathcal{R}_0 = R^*$, called as minimal relation is defined by

$$\mathcal{R}_0 = \{ (f,g) \in \left(L^2(H,\mathbb{R}_+) \right)^2 : \langle g,h \rangle = \langle f,k \rangle \text{ for all } (h,k) \in \mathcal{R} \}$$

The minimal relation \mathcal{R}_0 is symmetric: $\mathcal{R}_0 \subset \mathcal{R}_0^* = \mathcal{R}$ and is given by

$$\mathcal{R}_0 = \{ (f,g) \in \mathcal{R} : f(0+) = 0, \lim_{x \to \infty} f^*(x) Jh(x) = 0, (h,k) \in \mathcal{R} \}.$$

 β(R₀) is equal to the number of linearly independent solutions of the system 1 of whose class lie in L²(H, R₊).

It follows that \mathcal{R}_0 has equal defect indices, by Theorem 2 it has a self-adjoint extension say \mathcal{T} . Note: the limit circle case of the system 1. That implies for any $z \in \mathbb{C}^+$ the deficiency indices of \mathcal{R}_0 are (2,2). Suppose $p \in D(\mathcal{R}) \smallsetminus D(\mathcal{R}_0)$ such that $\lim_{x \to \infty} p(x)^* Jp(x) = 0$. Then the relation

$$\mathcal{T}^{\alpha,p} = \{(f,g) \in \mathcal{R} : f_1(0) \sin \alpha + f_2(0,z) \cos \alpha = 0$$

and
$$\lim_{x \to \infty} f(x)^* Jp(x) = 0\}.$$

defines a self-adjoint relation.

We next discuss the spectrum of $\mathcal{T}^{\alpha,p}$. Let u(x,z) and v(x,z) be two linearly independent solutions of the system 1 with

$$u(0,z) = \begin{pmatrix} 1\\ 0 \end{pmatrix}, v(0,z) = \begin{pmatrix} 0\\ 1 \end{pmatrix}.$$

Let $z \in \mathbb{C}^+$ and write $f(x, z) = u(x, z) + m(z)v(x, z) \in L^2(H, \mathbb{R}_+)$ satisfying $\lim_{x \to \infty} f(x, z)^* JP(x) = 0$. Let $T(x, z) = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}$ and $w_{\alpha}(x, z) = \frac{1}{\sin \alpha + m(z) \cos \alpha} T(x, z) \begin{pmatrix} \cos \alpha \\ -\sin \alpha \end{pmatrix}$.

Let $z\in\rho(\mathcal{T}^{\alpha,p})$ then the resolvent operator $(\mathcal{T}^{\alpha,p}-z)^{-1}$ is given by

$$(\mathcal{T}^{\alpha,p}-z)^{-1}h(x) = \int_0^\infty G(x,t,z)H(t)h(t)dt$$

where
$$G(x, t, z) = \begin{cases} f(x, z)w_{\alpha}(t, \bar{z})^* & \text{if } 0 < t \le x \\ w_{\alpha}(t, \bar{z})f(x, \bar{z}) & \text{if } x < t \le \infty \end{cases}$$

This is unitarily equivalent with the integral operator (Hilbert Schmidt) \mathcal{L} on $L^2(I, \mathbb{R}_+)$ given by

$$(\mathcal{L}g)(x) = \int_0^\infty L(x,t)g(t)dt, \ \ L(x,t) = H^{\frac{1}{2}}(x)G(x,t,z)H^{\frac{1}{2}}(t).$$

Hence it has only discrete spectrum consisting of eigenvalues and possibly zero. By Theorem 3, $\mathcal{T}^{\alpha,p}$ has discrete spectrum consisting of eigenvalues.

Main Theorem Application of the Main Theorem

Theorem 4

The defect index $\beta(\mathcal{R}_0, z) = \dim \mathcal{R}_{0_z}^{\perp} = \dim N(\mathcal{R}, \overline{z})$ of \mathcal{R}_0 is constant on \mathbb{C} .

Proof.

Since \mathcal{R}_0 is a symmetric relation, by Theorem 1 the defect index $\beta(\mathcal{R}_0, z)$ is constant on upper and lower half planes. Suppose $\beta(\mathcal{R}_0, \lambda) < 2$ for some $\lambda \in \mathbb{R}$. Since $\Gamma(\mathcal{R}_0)$ is open, $\lambda \notin \Gamma(\mathcal{R}_0)$ and hence $\lambda \in S(\mathcal{R}_0)$. Since for each $\alpha \in (0, \pi]$, $\mathcal{T}^{\alpha, p}$ is self-adjoint extension of \mathcal{R}_0 , $\lambda \in S(\mathcal{T}^{\alpha, p}) = \sigma(\mathcal{T}^{\alpha, p})$. Since $\sigma(\mathcal{T}^{\alpha, p})$ consists of only eigenvalues, λ is an eigenvalue for all boundary conditions α at 0. However, this is impossible unless $\beta(\mathcal{R}_0, \lambda) = 2$. This completes the proof.

Main Theorem Application of the Main Theorem

Theorem 5

Consider the canonical system 1 with trace $H \equiv 1$ then it prevails limit point case.

Proof.

Suppose it prevails the limit circle case. That means all solutions of 1 are in $L^2(H, \mathbb{R}_+)$. By Theorem 4, for $0 \in \mathbb{R}$, dim $N(\mathcal{R}, 0) = 2$. In particular, 0 is an eigenvalue and $u(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v(x) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are the eigenfunctions of the relation $\mathcal R$ in $L^2(H,\mathbb R_+)$. However, $\int_{0}^{\infty} u(x)^{*}H(x)u(x)dx + \int_{0}^{\infty} v(x)^{*}H(x)v(x)dx = \int_{0}^{\infty} \operatorname{trace} H(x)dx = \infty.$ This is a contradiction. It follows that the canonical system 1 has limit point case.

I.S. Kac.

On the Hilbert spaces, generated by monotone Hermitian matrix functions.

Kharkov, Zap Mat. o-va. 22: 95–113. 1950

Seppo Hassi, Henk De Snoo, and Henrik Winkler. Boundary-value problems for two-dimensional canonical systems. Integral Equations Operator Theory., 36(4): 445–479, 2000.

Joachim Weidmann.

Linear Operators in Hilbert Spaces. Springer-Verlag, 1980

Remling, Christian.

Schrödinger operators and de Branges spaces. Journal of Functional Analysis. 196(2): 323–394, 2002.

Keshav Acharya, and Christian Remling. Absolutely Continuous Spectum of a Canonical System (In preparation).

Thank You!