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Quantum spin systems

. A countable collection Γ (lattice) of finite dimensional quantum
systems (spins)

HΛ =
⊗
x∈Λ

Hx , Λ ⊂ Γ , finite

. The Heisenberg dynamics is generated by a local Hamiltonian: a
sum of short range interactions Φ(X ) with support in X ⊂ Λ

HΛ =
∑
X⊂Λ

Φ(X )

. Ground states: Eigenstates ψΛ to the lowest eigenvalue
(maybe group of low lying eigenvalues)

. The system is gapped if there is a lower bound on the spectral
gap above the ground state energy, uniform in Λ.
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‘Topological’ ground states

A jungle of ground state behaviours:
. Local order
. Symmetry breaking or not, unique vs multiple ground states
. Exponential/polynomial decay of correlations or no decay

All can be observed and categorized locally

Also: ‘topological order’ and edge states. The ground states are locally
indistinguishable, but differ globally: depending on the underlying
topology of the system, or at the edges.
E.g. Kitaev’s ‘toric code model’ defined on a 2-dimensional surface of
genus g has 4g degenerate ground states.
. Local disorder, sometimes called ‘topological order’

Note: A phase here is a family of models
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Classification – gapped phases

. The question: what defines a gapped ground state phase?

. Models within a phase should be qualitatively equivalent, for
example: same ground state degeneracy

. A conjecture in 1-d: all translation invariant chains with a unique
gapped thermodynamic ground state are in the same phase, in
particular simple product states

. Consensus: There cannot be a phase transition without closing
the gap

. A definition: Two gapped systems are equivalent if there exists a
smooth path of gapped Hamiltonians interpolating between them

. Also: The ground state spaces S within a phase should be
mapped onto each other by local unitary transformations

Sven Bachmann (UC Davis) Classification of gapped phases Tucson ’12 4 / 9



Automorphic equivalence

Theorem.
Given a smooth path of uniformly gapped Hamiltonians H(s) there is a
cocycle of automorphisms αs,s′ of the algebra of observables s.t.

S(s) = S(s′) ◦ αs,s′

The maps αs,s′ are generated by a time dependent interaction Ψ(X , s),
which decays almost exponentially; αs,s′ extend to infinite systems

Concretely, the action of the quasi-local transformations αs = αs,0 on
observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(0) = 1 and Vn(s) solves a Schrödinger equation:

d
ds

Vn(s) = iDn(s)Vn(s), with Dn(s) =
∑

X⊂Λn

Ψ(X , s)
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Product vacua with boundary states

. Now: Λ ⊂ Z and H = Cn+1

. We interpret the states as n distinguishable particles labeled
1, . . . ,n, and a vacuum 0

. The Hamiltonian has nearest-neighbor interaction (hopping)

Φ =
∑

1≤j≤n

|φ̂jj〉〈φ̂jj |+
∑

0≤j<k≤n

|φ̂jk 〉〈φ̂jk |,

with, for j 6= k = 0, . . . ,n,

φjk = |j , k〉 − e−iθkjλ−1
j λk |k , j〉 φjj = |j , j〉

The parameters satisfy 0 < λj 6= 1 for j = 1, . . . ,n, λ0 = 1, and
θjk = −θkj ∈ R
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PVBS ground states

. Each particle can appear at most once in the ground state

. The nL particles that have λi < 1 are bound to the left edge, the
nR particles that have λi > 1 are bound to the right edge.

. Finite chains: 2n ground states

. Thermodynamic limit: All converge to the product vacuum

. Half infinite chains: Edge states , 2nL on the right infinite chain

If λi 6= 1 for i > 0, the spectral gap if uniformly bounded below.
Moreover, the exact gap in the thermodynamic limit γ satisfies

γ < min
i=1,...,n

{
1− 2

λi + λ−1
i

}

Note: the gap closes whenever λi = 1 for some index i .
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Classification of phases

Lemma.
Two PVBS models belong to the same gapped phase (equivalence
class) if and only if they have the same nL and nR.

. If nL 6= nR, the dimensions of the ground state spaces don’t
match, so they cannot be related by an automorphism

. Smoothly interpolating between the λ values yields a path of
gapped Hamiltonians, as long as no λ crosses 1.

As an example of the use of the classes, we identify the class of a
SU(2)-invariant spin-1 antiferromagnet, the AKLT model

Theorem.
The AKLT model belongs to the PVBS phase with nL = nR = 1.

. The thermodynamic phase is equivalent to a product state
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Concluding remarks

What has been done:
. Two models belong to the same phase if for a given set of lattices

Γ’s, there is a local automorphism αΓ of the observable algebra
relating the ground state spaces.

. In particular, this takes edges and topologies into account

. In one dimension, the PVBS are simple representatives of
classes with a unique bulk ground state

. They allow for a refined version of the product phase conjecture
Much more to do:
. In 1-d: More general PVBS, with multiple bulk ground states
. Higher dimensions, real topological phases
. Quantum phase transitions and universality
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