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Bose gas inside a GSC

Goal: Study equilibrium thermodynamics of quantum gases in fractal spaces.
We will focus on a gas of quantum particles which satisfy Bose-Einstein statistics: the
many-body wavefunction is unchanged under particle swapping.

m How does the fractal geometry (with non-integer Hausdorff dimension) affect the
thermodynamics (energy, pressure, ...) of the confined quantum gas?

m Or, is the Hausdorff dimension the right dimension to consider in this context?



Generalized Sierpinski carpets

Sierpinski carpet Menger sponge
(mp =8, I = 3) (mp =20, Ip = 3)

m GSCs are highly symmetric, infinitely ramified fractals and have connected
interior. (Translation: Analysis is much harder than, say, Sierpinski gaskets.)

m Let /r and mg be, resp. the length and mass scale factor of a GSC F.
Hausdorff dimension dy(F) = log mg/ log IE.

m F, : nth-level approximation of the fractal F.

m Let v, be the self-similar measure on F, (= Borel prob measure which assigns

equal weight to every cell of F,). vy — v = (const.) X dp(F)-dim Hausdorff
measure.



m H, = Sym (L2(F,v)®"), F := ®p>oHn (bosonic Fock space).

m H:H; — Hi a one-body Hamiltonian, H = dT'(H) its second quantization,
N = dl(1) the number operator.

m 3 € (0,00] is the inverse temperature.

m 4 € (—oo,inf Spec(H)] is the chemical potential.

The Gibbs state is a linear functional over the quasi-local C*-algebras on F satisfying
wg u(A) = E_}#Tr]: (Ae_B(H_“N)) VA € C*-algebras
where the partition function reads
=g =Trr (e_’B(H_“N)) .
The free energy is
Fgu=—-B"tlog=g,,.

The expected values of particle number and energy can be obtained by taking
derivatives:
N 9 | T L H) = |
wﬂ’ﬂ( ) ﬂ a og== THy eBH—p) _ 17 wB,M( )_ _86 og=.

Special case: Bose gas, no inter-particle interactions.

log =g, = —Try, log(1 — e~ PH=1)),



Statement of the Problem
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Compute log =g, and/or wg ,(N) when F is a GSC, v is the self-similar measure on
F, and the Bose gas is of the following types:
Atomic gas: H = —A, p < inf Spec(H). [Satisfies Schr eqn i0:1) = —A).]
— Bose-Einstein condensation
(Massless) photon gas: H = +/—A, u = 0. [Satisfies wave eqn 9y = Av.]
— Blackbody radiation, Casimir effect
Here the Laplacian A is defined & la Barlow-Bass (BMs on outer approximations) or
Kusuoka-Zhou (random walks on SC graphs). Up to time change, both versions of the
Laplacian generate the same (and the unique) Brownian motion on SC
[Barlow-Bass-Kumagai-Teplyaev '10].

To demonstrate BEC, we need to show that in the infinite volume limit, 3k € Ny such
that the particle density projected onto the (k + 1)-th eigenfunction is strictly positive
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for sufficiently large 3.



Laplacian (equiv. B.M., Dirichlet form) on GSCs

Quter Approximation Inner approximation
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W reflecting B.M. on Fj. Take the graph energy on
Barlow-Bass ('90s) showed that there Gn = (Vi, En),

exist a, < (mppg/I2)" such that En(u) = X (e, [u(x) — u(y))2.
{XE}tn = {Wj,c}n converges in Kusuoka-Zhou ('92) showed that
subsequence. {pEEn}n converges in subsequence.

The Laplacian is defined to be the infinitesimal generator of the limit process on the
GSC F.

Theorem (Barlow-Bass-Kumagai-Teplyaev '10)

Up to deterministic time change, both versions of the Laplacian generates the unique
B.M. on F which respects the local symmetries of F.



Various dimensions of the Sierpinski carpet

Sierpinski carpet Menger sponge
(mp =8, I =3) (mp =20, Ig = 3)

Hausdorff dim: dj, = log mg/ log IE.
m Walk dim: EX7g (,) X r . [On fractals, dw > 2 (sub-Gaussian diffusion).]
m Spectral dim: ds = 2(dp/dw) = 2log mg/ log(mepE).

m Resistance renormalization factor pr: Relates the resistance on F, to that on
Fn+1. No closed form expression of pg is known on GSCs [Barlow-Bass '99] .

pr <1< ds(F) > 2 < BM is transient on the unbounded carpet.



Weyl asymptotics of the Laplacian on GSC

Let N(s) := #{X < s: X an eigenvalue of — A} be the integrated DOS.

Heuristic (as supported by lots of numerics: C.-Strichartz, BeguéKalloniatis-Strichartz)

N(s) = s%/% [H(log s) + o(1)] as s — oo,

where H is log(mgpg)-periodic, and bounded away from 0 and oo.

The log-periodic modulation is due to the discrete scale invariance of the carpet.

‘Weyl ralo o Barlow-Bass Laplacian on SC (3=0.87) Weyl ratio of Kusuoka~Zhou Laplacian on SC (a=0.90)
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(c) Outer approx (d) Inner approx

Problem: We don’t know how to prove this heuristic (involves sophisticated Tauberian
arguments). So to show BEC rigorously we use a different (albeit general & powerful)
technique: heat kernel estimates & spectral zeta functions.



Criterion for BEC in Sierpinski carpets

Theorem (C.)

For an unbounded GSC, the following are equivalent:
Spectral dimension ds > 2.
(The Brownian motion whose generator is) the Laplacian is transient.

BEC exists for a low-temperature, high-density ideal Bose gas.

BEC in non-integer dimensions: Menger Sponges

MS(3,1) Mé(zx,z) Mé(é,s) Ms(6,4)

dp log320 ~ 2.73 log,32 =125 log;44 ~ 235 logg56 ~ 2.25

Rigorous bnds on
d5 [Barlow-Bass '99]

2.21 ~ 2.60 2.00 ~ 2.26 1.89 ~ 2.07 1.82 ~ 1.95

Numerical ds [c- 251... _ 2.01... -
Strichartz]

BEC exists? Yes Yes Yes (?) No



Heat kernel estimates on GSCs

Heat kernel: BX[f(X:)] = (e!2F)(x) = [¢ pt(x, y)f(y)v(dy).
Theorem (Barlow, Bass, Kusuoka, Zhou, - --)
du \ Ta=T
pe(x,y) < Cit=%/ M exp | -G, (%) :

Here dj, = log mg/ log Ir (Hausdorff), dw = log(prmg)/ log Ir (walk).

d |
Zh = 2ﬂ is the spectral dimension of the carpet.
dw log(mrpF)

For any carpet, dy > 2 and 1 < ds < dp, indicative of sub-Gaussian diffusion.

ds =2

Theorem (Hambly '11, Kajino '10)

There exists a log(mgpg)-periodic function G, bounded away from 0 and oo, such
that the heat kernel trace

K(t) := Tr(et?) = /I:_pt(x,x)u(dx) =t~ /4 [G(—logt) + o(1)] ast 0.



Short-time asymptotics of the heat kernel trace on GSC

Theorem (Kajino '09+)

For any GSC F C RY with Dirichlet exterior boundary, there exist continuous,
log(mg pfg)-periodic functions Gx : R — R for k =0,1,--- ,d such that

d
K(t) = Z t= %/ G (= log t) + O (exp (—ct7 dwlfl)) as t 0,
k=0

where dy :=dp (FN{x1 =+ = xx = 0}).

Proof exploits the full symmetry of the GSC and uses the renewal thm.
Rem 1. Gy > 0 and G; < 0. Numerics suggest that Gy is nonconstant.
Rem 2. Corresponding Weyl asymptotics for a parallelpiped in RY is

d
K(t) = Zt (d=k/2¢, 4 Oexp(—ct™)) as t]0.
k=0

Notation. Gi(x) = ZPGZ Gk:PeXP (%) ’

Definition (Cesaro-averaged spectral volume)

The spectral volume of a GSC of side L is Vg = (41)% Gy oL%. (ds = 2(dj/dw))



Spectral zeta function

_ L _ [T ket ®t
CA(S,W)ler(_A_H/)S = r(s)/o EK (e

Absicssa of convergence is Re(s) = dp/dw = ds/2.

Theorem (Steinhurst-Teplyaev '10)

s — ¢a(s,y) admits a meromorphic extension to C.

(Poles of ¢A (5, 0). for GSC C B?) 1
Im(s)
° d 2pTi
dk,p =2 <7k s pi)
° dw  log(mepF)
°e The di,, correspond to the complex
— Re(s) dims of the fractal, a la M. Lapidus.
d dy
dy dy o
dy Gy

Res (CA(.70)7 J) - __ %P

<. 2 T (di.p/2)

Moreover, (a(s,0) =0 Vs e —N.



Atomic gas in Sierpinski carpets (H = —A, u < inf Spec(H))

1 o+ico
o=, = 5 [ AT+ Dealt —m)de, @ > dif2

270 Jo—ico
Particle density should be the number of bosons per unit spectral volume p.
To take the infinite volume limit, we exhaust the unbounded carpet Foo = Uﬁio I,’}F
by an increasing family of carpets {As}n = {IEF}n.

(5. 1) N 1 1 1 i 1
= = T =
PN, P> K WAn, B, 1 Va(An) Ve(An)  eB=Bn,—1) 1 Vs(An) = eBE(An)—p) _ 1

Ej(An) is the (j + 1)th eigenvalue of the Laplacian —A,,.

Lemma

As n — oo, the density of Bose gas in A, at (3, ) is

ems —lo mb m=%/2 4o
onn(Bs 1) = (47r6)ds/2600 Z Gy ( log ((/F)Qn)) + o(1).

In particular, the upper critical density p.(8) := limsup pa,(53,0) < oo iff ds > 2, in
n— oo

_ _ max(Gop) é
pc(ﬂ) - (47T6)d5/2GO,OC ( 2 ) .

which case



Bose-Einstein condensation in Sierpinski carpets

Theorem (C.)
Assume ds > 2. For each ptot > 0, let u, be the unique root of pp, (5, pn) = prot.
If ptot < P.(B), and & is the root of Ii:rl)solip PA, (B, ) = ptot, then ILn;iorlf tn = M.
If ptot > P(B), then ngn;o un = 0. Moreover if we denote the boson occupation
density in the ground state, a.k.a. the condensate density, by

1 1
0 o
p/\n(,B,,LL) = Vs(/\n) eB(EO(An)*M) — 1’

then lim [p} (8, 4n) + pn,(8,0)] = prot.

Remark. A similar analysis shows that the liminf free energy density, regarded as a
function of particle density, is non-analytic at p.(3).

Interpretation

If the Bose gas density exceeds p.(3), any excess density must condense in the lowest
eigenfunction of the Laplacian. This is the fractal version of Bose-Einstein
condensation (BEC), a quantum phase transition.

(unique KMS state in regime (1), non-unique KMS states in regime (2)).



Criterion for BEC in Sierpinski carpets

Theorem (C.)
For an unbounded GSC, the following are equivalent:
Spectral dimension ds > 2.
(The Brownian motion whose generator is) the Laplacian is transient.

BEC exists for a low-temperature, high-density ideal Bose gas.

Transience of BM < BEC of ideal Bose gas in unbounded spaces appears to be a very
general principle. It has been established on:

m Euclidean spaces: R, 79,

m Inhomogeneous graphs: Comb graphs, density-0 perturbations of Cayley trees.

[Fidaleo-Guido-Isola, Matsui]

m Fractals: GSCs.



Looking ahead

m Existence of BEC for interacting Bose gas on fractals?
More conveniently studied on GSC graphs.
Special case: Hardcore Bose gas, where interactions take place on single site and
no more than 1 particle occupies each site. Then the Hamiltonian can be mapped
1:1 to that of the (spin—%) XY-model. Existence of BEC < Existence of phase
transition in quantum XY. Also useful to consider classical XY.
m Thm. Recurrence of SRW = No p.t. in XY. [Cassi '92]
m Generally, transience of SRW is necessary, but not sufficient, for p.t. in XY.
[Pemantle-Steif '99, Hggstrsm 00].
m Problem: Show on GSC graphs whether transience of SRW is sufficient for p.t. in XY.
[On 79 this was answered by Frohlich-Simon-Spencer '76 (classical XY) and Dyson-Lieb-Simon '78 (quantum XY).]

m Dynamics of dilute Bose gas on fractals? [superfluidity, solitons]
In RY it has been proved that the mean-field Gross-Pitaevskii eqn, a cubic
nonlinear Schrddinger eqn, is the correct governing PDE in the scaling limit where
the particle number — 00. [Erdss-Schiein-vau '06] Is this the case on Sierpinski carpets?

m Developing some notion of field theory on fractals may be fruitful.
Study Gaussian free fields (GFFs): E¢x = 0, E[¢x¢,] = G(x,y), Vx,y € F.
In joint work with Baris Ugurcan (to appear later in '12), we have:

m Given explicit Lévy-type construction of GFFs on post-critically finite (pcf) fractals (e.g.
Sierpinski gaskets). and described their regularity properties.

m Similarly characterized GFFs on GSCs: GFFs diverge at every point a.s. if ds > 2.

m Computed the expected maxima of GFFs on both pcf fractals and GSCs. Two
consequences of this result: 1) Obtained sharp asymptotics of the cover times on fractal
graphs; 2) Established the chaos (or superconcentration, a la Sourav Chatterjee) of
GFFs on fractals with ds > 2.



