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Bose gas inside a GSC

Goal: Study equilibrium thermodynamics of quantum gases in fractal spaces.
We will focus on a gas of quantum particles which satisfy Bose-Einstein statistics: the
many-body wavefunction is unchanged under particle swapping.

Questions

How does the fractal geometry (with non-integer Hausdorff dimension) affect the
thermodynamics (energy, pressure, ...) of the confined quantum gas?

Or, is the Hausdorff dimension the right dimension to consider in this context?



Generalized Sierpinski carpets

Sierpinski carpet Menger sponge
(mF = 8, lF = 3) (mF = 20, lF = 3)

GSCs are highly symmetric, infinitely ramified fractals and have connected
interior. (Translation: Analysis is much harder than, say, Sierpinski gaskets.)

Let lF and mF be, resp. the length and mass scale factor of a GSC F .
Hausdorff dimension dh(F ) = log mF / log lF .

Fn : nth-level approximation of the fractal F .

Let νn be the self-similar measure on Fn (= Borel prob measure which assigns
equal weight to every cell of Fn). νn ⇀ ν = (const.)×dh(F )-dim Hausdorff
measure.



Gibbs state & partition function [in the grand canonical ensemble]

Hn = Sym
(
L2(F , ν)⊗n

)
, F := ⊕n≥0Hn (bosonic Fock space).

H : H1 →H1 a one-body Hamiltonian, H = dΓ(H) its second quantization,
N = dΓ(1) the number operator.

β ∈ (0,∞] is the inverse temperature.

µ ∈ (−∞, inf Spec(H)] is the chemical potential.

The Gibbs state is a linear functional over the quasi-local C∗-algebras on F satisfying

ωβ,µ(A) = Ξ−1
β,µTrF

(
Ae−β(H−µN)

)
∀A ∈ C∗-algebras

where the partition function reads

Ξβ,µ := TrF
(
e−β(H−µN)

)
.

The free energy is
Fβ,µ = −β−1 log Ξβ,µ.

The expected values of particle number and energy can be obtained by taking
derivatives:

ωβ,µ(N) =
1

β

∂

∂µ
log Ξ = TrH1

1

eβ(H−µ) − 1
, ωβ,µ(H) = −

∂

∂β
log Ξ.

Special case: Bose gas, no inter-particle interactions.

log Ξβ,µ = −TrH1
log(1− e−β(H−µ)).



Statement of the Problem

log Ξβ,µ = −TrH1
log(1− e−β(H−µ)), ωβ,µ(N) = TrH1

1

eβ(H−µ) − 1
.

Compute log Ξβ,µ and/or ωβ,µ(N) when F is a GSC, ν is the self-similar measure on
F , and the Bose gas is of the following types:

1 Atomic gas: H = −∆, µ ≤ inf Spec(H). [Satisfies Schr eqn i∂tψ = −∆ψ.]
→ Bose-Einstein condensation

2 (Massless) photon gas: H =
√
−∆, µ = 0. [Satisfies wave eqn ∂ttψ = ∆ψ.]

→ Blackbody radiation, Casimir effect

Here the Laplacian ∆ is defined à la Barlow-Bass (BMs on outer approximations) or
Kusuoka-Zhou (random walks on SC graphs). Up to time change, both versions of the
Laplacian generate the same (and the unique) Brownian motion on SC
[Barlow-Bass-Kumagai-Teplyaev ’10].

To demonstrate BEC, we need to show that in the infinite volume limit, ∃k ∈ N0 such
that the particle density projected onto the (k + 1)-th eigenfunction is strictly positive

lim inf
Vol→∞

ωβ,µ

(
PkNPk

Vol

)
= lim inf

Vol→∞

1

Vol

1

eβ(Ek−µ) − 1
> 0

for sufficiently large β.



Laplacian (equiv. B.M., Dirichlet form) on GSCs

Outer Approximation

W n
t : reflecting B.M. on Fn.

Barlow-Bass (’90s) showed that there
exist an � (mFρF /l

2
F )n such that

{X n
t }n := {W n

ant
}n converges in

subsequence.

Inner approximation

Take the graph energy on
Gn = (Vn,En),
En(u) =

∑
〈xy〉∈En [u(x)− u(y)]2.

Kusuoka-Zhou (’92) showed that
{ρnFEn}n converges in subsequence.

The Laplacian is defined to be the infinitesimal generator of the limit process on the
GSC F .

Theorem (Barlow-Bass-Kumagai-Teplyaev ’10)

Up to deterministic time change, both versions of the Laplacian generates the unique
B.M. on F which respects the local symmetries of F .



Various dimensions of the Sierpinski carpet

Sierpinski carpet Menger sponge
(mF = 8, lF = 3) (mF = 20, lF = 3)

Hausdorff dim: dh = log mF / log lF .

Walk dim: ExτBr (x) � rdw . [On fractals, dw > 2 (sub-Gaussian diffusion).]

Spectral dim: ds = 2(dh/dw ) = 2 log mF / log(mFρF ).

Resistance renormalization factor ρF : Relates the resistance on Fn to that on
Fn+1. No closed form expression of ρF is known on GSCs [Barlow-Bass ’99] .

ρF < 1⇔ ds(F ) > 2⇔ BM is transient on the unbounded carpet.



Weyl asymptotics of the Laplacian on GSC

Let N(s) := #{λ < s : λ an eigenvalue of−∆} be the integrated DOS.

Heuristic (as supported by lots of numerics: C.-Strichartz, Begué-Kalloniatis-Strichartz)

N(s) = sdh/dw [H(log s) + o(1)] as s →∞,

where H is log(mFρF )-periodic, and bounded away from 0 and ∞.

The log-periodic modulation is due to the discrete scale invariance of the carpet.

10
0

10
1

10
2

10
3

10
4

10
−0.1

10
0

10
0.1

10
0.2

10
0.3

s

W
(s

)=
N

(s
)/

sα

Weyl ratio of Barlow−Bass Laplacian on SC (α=0.87)

 

 

Level 4
Level 5

(c) Outer approx

10
0

10
1

10
2

10
3

10
4

10
−0.1

10
0

10
0.1

10
0.2

s
W

(s
) 

=
 N

(s
)/

sα
 

 
Weyl ratio of Kusuoka−Zhou Laplacian on SC (α=0.90)

Level 4

Level 5

(d) Inner approx

Problem: We don’t know how to prove this heuristic (involves sophisticated Tauberian
arguments). So to show BEC rigorously we use a different (albeit general & powerful)
technique: heat kernel estimates & spectral zeta functions.



Criterion for BEC in Sierpinski carpets

Theorem (C.)

For an unbounded GSC, the following are equivalent:

1 Spectral dimension ds > 2.

2 (The Brownian motion whose generator is) the Laplacian is transient.

3 BEC exists for a low-temperature, high-density ideal Bose gas.

BEC in non-integer dimensions: Menger Sponges

MS(3,1) MS(4,2) MS(5,3) MS(6,4)
dh log3 20 ≈ 2.73 log4 32 = 2.5 log5 44 ≈ 2.35 log6 56 ≈ 2.25
Rigorous bnds on
ds [Barlow-Bass ’99]

2.21 ∼ 2.60 2.00 ∼ 2.26 1.89 ∼ 2.07 1.82 ∼ 1.95

Numerical ds [C.-

Strichartz]
2.51... - 2.01... -

BEC exists? Yes Yes Yes (?) No



Heat kernel estimates on GSCs

Heat kernel: Ex [f (Xt)] = (et∆f )(x) =
∫
F pt(x , y)f (y)ν(dy).

Theorem (Barlow, Bass, Kusuoka, Zhou, · · · )

pt(x , y) � C1t
−dh/dw exp

−C2

(
|x − y |dw

t

) 1
dw−1

 .

Here dh = log mF / log lF (Hausdorff), dw = log(ρFmF )/ log lF (walk).

ds = 2
dh

dw
= 2

log mF

log(mFρF )
is the spectral dimension of the carpet.

For any carpet, dw > 2 and 1 ≤ ds < dh, indicative of sub-Gaussian diffusion.

Theorem (Hambly ’11, Kajino ’10)

There exists a log(mFρF )-periodic function G , bounded away from 0 and ∞, such
that the heat kernel trace

K(t) := Tr(et∆) =

∫
F
pt(x , x)ν(dx) = t−dh/dw [G(− log t) + o(1)] as t ↓ 0.



Short-time asymptotics of the heat kernel trace on GSC

Theorem (Kajino ’09+)

For any GSC F ⊂ Rd with Dirichlet exterior boundary, there exist continuous,
log(mFρF )-periodic functions Gk : R→ R for k = 0, 1, · · · , d such that

K(t) =
d∑

k=0

t−dk/dwGk (− log t) +O
(

exp

(
−ct−

1
dw−1

))
as t ↓ 0,

where dk := dh (F ∩ {x1 = · · · = xk = 0}).

Proof exploits the full symmetry of the GSC and uses the renewal thm.
Rem 1. G0 > 0 and G1 < 0. Numerics suggest that G0 is nonconstant.
Rem 2. Corresponding Weyl asymptotics for a parallelpiped in Rd is

K(t) =
d∑

k=0

t−(d−k)/2Ck +O(exp(−ct−1)) as t ↓ 0.

Notation. Gk (x) =
∑

p∈Z Ĝk,p exp
(

2pπix
log(mF ρF )

)
.

Definition (Cesaro-averaged spectral volume)

The spectral volume of a GSC of side L is VS = (4π)ds Ĝ0,0Lds . (ds = 2(dh/dw ))



Spectral zeta function

ζ∆(s, γ) = Tr
1

(−∆ + γ)s
=

1

Γ(s)

∫ ∞
0

tsK(t)e−γt
dt

t

Absicssa of convergence is Re(s) = dh/dw = ds/2.

Theorem (Steinhurst-Teplyaev ’10)

s 7→ ζ∆(s, γ) admits a meromorphic extension to C.

(Poles of ζ∆(s, 0), for GSC ⊂ R2)

Re(s)

Im(s)

d0
dw

d1
dw

dk,p := 2

(
dk

dw
+

2pπi

log(mFρF )

)
The dk,p correspond to the complex

dims of the fractal, à la M. Lapidus.

Res

(
ζ∆(·, 0),

dk,p

2

)
=

Ĝk,p

Γ
(
dk,p/2

) .
Moreover, ζ∆(s, 0) = 0 ∀s ∈ −N.



Atomic gas in Sierpinski carpets (H = −∆, µ ≤ inf Spec(H))

log Ξβ,µ =
1

2πi

∫ σ+i∞

σ−i∞
β−tΓ(t)ζ(t + 1)ζ∆(t,−µ)dt, σ > ds/2.

Particle density should be the number of bosons per unit spectral volume ρ.
To take the infinite volume limit, we exhaust the unbounded carpet F∞ =

⋃∞
n=0 l

n
FF

by an increasing family of carpets {Λn}n = {lnFF}n.

ρΛn (β, µ) := ωΛn,β,µ

(
N

Vs(Λn)

)
=

1

Vs(Λn)
Tr

1

eβ(−∆Λn−µ) − 1
=

1

Vs(Λn)

∞∑
j=0

1

eβ(Ej (Λn)−µ) − 1
.

Ej (Λn) is the (j + 1)th eigenvalue of the Laplacian −∆Λn .

Lemma

As n→∞, the density of Bose gas in Λn at (β, µ) is

ρΛn (β, µ) =
1

(4πβ)ds/2Ĝ0,0

∞∑
m=1

emβµG0

(
− log

(
mβ

(lF )2n

))
m−ds/2 + o(1).

In particular, the upper critical density ρc (β) := lim sup
n→∞

ρΛn (β, 0) <∞ iff ds > 2, in

which case

ρc (β) =
max(G0)

(4πβ)ds/2Ĝ0,0

ζ

(
ds

2

)
.



Bose-Einstein condensation in Sierpinski carpets

Theorem (C.)

Assume ds > 2. For each ρtot > 0, let µn be the unique root of ρΛn (β, µn) = ρtot.

1 If ρtot ≤ ρc (β), and µ is the root of lim sup
n→∞

ρΛn (β, µ) = ρtot, then lim inf
n→∞

µn = µ.

2 If ρtot > ρc (β), then lim
n→∞

µn = 0. Moreover if we denote the boson occupation

density in the ground state, a.k.a. the condensate density, by

ρ0
Λn

(β, µ) :=
1

Vs(Λn)

1

eβ(E0(Λn)−µ) − 1
,

then lim
n→∞

[
ρ0

Λn
(β, µn) + ρΛn (β, 0)

]
= ρtot.

Remark. A similar analysis shows that the liminf free energy density, regarded as a
function of particle density, is non-analytic at ρc (β).

Interpretation

If the Bose gas density exceeds ρc (β), any excess density must condense in the lowest
eigenfunction of the Laplacian. This is the fractal version of Bose-Einstein
condensation (BEC), a quantum phase transition.
(unique KMS state in regime (1), non-unique KMS states in regime (2)).



Criterion for BEC in Sierpinski carpets

Theorem (C.)

For an unbounded GSC, the following are equivalent:

1 Spectral dimension ds > 2.

2 (The Brownian motion whose generator is) the Laplacian is transient.

3 BEC exists for a low-temperature, high-density ideal Bose gas.

Transience of BM ⇔ BEC of ideal Bose gas in unbounded spaces appears to be a very
general principle. It has been established on:

Euclidean spaces: Rd , Zd .

Inhomogeneous graphs: Comb graphs, density-0 perturbations of Cayley trees.
[Fidaleo-Guido-Isola, Matsui]

Fractals: GSCs.



Looking ahead

Existence of BEC for interacting Bose gas on fractals?
More conveniently studied on GSC graphs.
Special case: Hardcore Bose gas, where interactions take place on single site and
no more than 1 particle occupies each site. Then the Hamiltonian can be mapped
1:1 to that of the (spin- 1

2
) XY-model. Existence of BEC ⇔ Existence of phase

transition in quantum XY. Also useful to consider classical XY.

Thm. Recurrence of SRW ⇒ No p.t. in XY. [Cassi ’92]

Generally, transience of SRW is necessary, but not sufficient, for p.t. in XY.
[Pemantle-Steif ’99, Häggström ’00].
Problem: Show on GSC graphs whether transience of SRW is sufficient for p.t. in XY.
[On Zd this was answered by Fröhlich-Simon-Spencer ’76 (classical XY) and Dyson-Lieb-Simon ’78 (quantum XY).]

Dynamics of dilute Bose gas on fractals? [superfluidity, solitons]
In Rd it has been proved that the mean-field Gross-Pitaevskii eqn, a cubic
nonlinear Schrödinger eqn, is the correct governing PDE in the scaling limit where
the particle number →∞. [Erdös-Schlein-Yau ’06] Is this the case on Sierpinski carpets?

Developing some notion of field theory on fractals may be fruitful.
Study Gaussian free fields (GFFs): Eφx = 0, E[φxφy ] = G(x , y), ∀x , y ∈ F .
In joint work with Baris Ugurcan (to appear later in ’12), we have:

Given explicit Lévy-type construction of GFFs on post-critically finite (pcf) fractals (e.g.
Sierpinski gaskets). and described their regularity properties.
Similarly characterized GFFs on GSCs: GFFs diverge at every point a.s. if ds ≥ 2.
Computed the expected maxima of GFFs on both pcf fractals and GSCs. Two
consequences of this result: 1) Obtained sharp asymptotics of the cover times on fractal
graphs; 2) Established the chaos (or superconcentration, à la Sourav Chatterjee) of
GFFs on fractals with ds ≥ 2.


