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Schrödinger operators on a half-line

We investigate half-line Schrödinger operators H = −∆ + V

0 will be a regular endpoint (and most of our statements will be
independent of boundary condition)

V should obey an oscillation condition and decay at +∞
What can we say about the spectrum of H?

(Corollary of Weyl’s theorem for relatively compact perturbations)
If V decays at infinity, in the sense that

lim
n→∞

∫ n+1

n

|V (x)|dx = 0

then σess(H) = [0,+∞)

What about the decomposition into absolutely continuous, singular
continuous, pure point spectrum? How stable is a.c. spectrum?
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Decaying potentials with harmonic oscillations

(the Wigner–von Neumann potential)
Explicit potential on (0,+∞) with asymptotic behavior

V (x) = −8
sin 2x

x
+ O(x−2), x →∞

such that −∆ + V has eigenvalue +1 embedded in the a.c.
spectrum (0,+∞)

(Atkinson, Harris–Lutz, Ben Artzi–Devinatz)
If

V (x) =
K∑

k=1

λk
sin(αkx)

xγk
+ W (x)

with γk >
1
2 and W ∈ L1, then H has purely a.c. spectrum on

(0,+∞) \
{α2

k

4 | 1 ≤ k ≤ K
}

(Weidmann)
If V has bounded variation and V (x)→ 0 as x → +∞, then
−∆ + V has purely a.c. spectrum on (0,+∞)
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Generalized bounded variation: definition

A function β(x) has rotated bounded variation with phase φ if
e iφxβ(x) has bounded variation

A function V (x) has generalized bounded variation with phases
φ1, . . . , φL (L <∞) if

V (x) =
L∑

l=1

βl(x) + W (x)

where βl has rotated bounded variation with phase φl and W ∈ L1

Example of rotated bounded variation:

e−i(φx+α)

(1 + x)γ
, with γ > 0

Example of generalized bounded variation:

cos(φx + α)

(1 + x)γ
, with γ > 0

or a linear combination of such terms
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Potentials of generalized bounded variation

Theorem 1. Let V : (0,∞)→ R be such that
V has generalized bounded variation with set of phases
A = {φ1, . . . , φL}, i.e.

V (x) =
L∑

l=1

βl(x) + W (x)

where e iφlxβl(x) has bounded variation and W ∈ L1

V ∈ L1 + Lp for some p <∞
Then the operator H = −∆ + V on L2(0,+∞) satisfies

σac(H) = [0,+∞)
σsc(H) = ∅

σpp(H) ∩ (0,∞) ⊂
{
η2

4

∣∣∣ η ∈ p−1⋃
k=1

(A + · · ·+ A︸ ︷︷ ︸
k times

)
}

is a finite set

Application: slowly decaying Wigner–von Neumann type potentials

V (x) =
K∑

k=1

λk
cos(αkx + ξk)

xγk
+ W (x), γk > 0, W ∈ L1
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Existence of embedded eigenvalues

Theorem 2. For a generic choice of α1, . . . , αK and

E =
1

4
(±αj1 ± · · · ± αjp−1)2,

there exists an Lp potential of generalized bounded variation

V (x) =
K∑

k=1

λk
1

xγ
cos(αkx + ξk(x)) + β0(x), x ≥ x0

such that −∆ + V has a real-valued eigenfunction u(x) at energy E with
asymptotics

1√
E

u′(x) + iu(x) = Af (x)e i [
√
Ex+θ∞](1 + o(1)), x →∞

with

f (x) =

{
x−Cλj1

...λjp−1 γ = 1
p−1

exp
(
− C

1−(p−1)γλj1 . . . λjp−1x1−(p−1)γ
)

γ ∈ ( 1
p ,

1
p−1 )

and A,C > 0
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Extending to infinitely many frequencies

Our Theorem 1 applies, in particular, to potentials of the form

V (x) = τ(x)
K∑

k=1

cke iφkx

where K <∞ and τ(x) ∈ Lp has bounded variation

Can we generalize to potentials of the form

V (x) = τ(x)W (x)

where W (x) is a more general oscillatory function?
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Periodic potential × decay

Theorem 3. Let V (x) = τ(x)W (x), where

τ(x) ∈ Lp has bounded variation

W (x) is periodic of period T , such that

the Fourier series of W converges in L1(0,T ) to W

the Fourier coefficients of W obey
∑

n∈Z\{0} |
Ŵn
n
| < ∞

(for instance, let W ∈ L2(0,T ))

Then

σac(H) = [0,+∞)

σsc(H) = ∅

σpp(H) ∩ (0,∞) ⊂
{

k2π2

T 2

∣∣∣ k ∈ Z
}

is at most countable
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Almost periodic potential × decay

Theorem 4. Let V (x) = τ(x)W (x), where

τ(x) ∈ Lp has bounded variation

W (x) =
∑∞

k=1 cke iφkx , with
∑
|ck |α <∞ for some α ∈ [0, 1)

Then there is a set S, independent of boundary condition at 0, which
supports the singular part of the spectral measure, such that

dimH S ≤ (p − 1)α

(dimH stands for Hausdorff dimension) and σac(H) = [0,+∞).



All the theorems stated have analogs for orthogonal polynomials
on the real line and unit circle

Thank you for your attention!


	Schrödinger operators
	Generalized bounded variation
	Infinite frequency results

