Absolutely continuous spectrum for random Schrödinger operators on tree-strips of finite cone type.

Christian Sadel

University of California, Irvine

Tucson, March 13th, 2012

- A tree-strip of finite cone type of width *m* is the product graph of a finite graph \mathbb{G} with *m* vertices and a rooted tree of finite cone type.
- The product graph of two graphs \mathbb{G}_1 and \mathbb{G}_2 is defined as follows: (x_1, y_1) and (x_2, y_2) are connected by an edge, iff either $x_1 = x_2$ and y_1 and y_2 are connected by an edge, or $y_1 = y_2$ and x_1 and x_2 are connected by an edge.

- A tree-strip of finite cone type of width *m* is the product graph of a finite graph \mathbb{G} with *m* vertices and a rooted tree of finite cone type.
- The product graph of two graphs \mathbb{G}_1 and \mathbb{G}_2 is defined as follows: (x_1, y_1) and (x_2, y_2) are connected by an edge, iff either $x_1 = x_2$ and y_1 and y_2 are connected by an edge, or $y_1 = y_2$ and x_1 and x_2 are connected by an edge.
- A tree of finite cone type can be constructed from an s × s substitution matrix S with non-negative integer entries, as follows: Each vertex has a label p ∈ {1,...,s}. A vertex of label p has S_{p,q} children of label q. Except for the root, a vertex of label p has ∑_q S_{p,q} + 1 neighbors. The tree is determined by the label of the root, if the label is p we call the tree T^(p).
- The cone of descendents of a vertex with label p is equal to T^(p). Hence, there are only finitely many different types of cones of descendants and therefore the tree is called of 'finite cone type'.

- We consider the Hilbert space $\ell^2(\mathbb{T}^{(p)} \times \mathbb{G}) = \ell^2(\mathbb{T}^{(p)}) \otimes \mathbb{C}^m = \ell^2(\mathbb{T}^{(p)}, \mathbb{C}^m)$. An element $u \in \ell^2(\mathbb{T}^{(p)}, \mathbb{C}^m)$ is considered as a function $u : \mathbb{T}^{(p)} \mapsto \mathbb{C}^m$ with $\sum_{x \in \mathbb{T}^{(p)}} \|u(x)\|^2 < \infty$.
- On $\ell^2(\mathbb{T}^{(p)},\mathbb{C}^m)$ we consider the random Schrödinger operators

$$(H_{\lambda} u)(x) = \sum_{y:d(x,y)=1} u(y) + Au(x) + \lambda V(x) u(x).$$

- We consider the Hilbert space $\ell^{2}(\mathbb{T}^{(p)} \times \mathbb{G}) = \ell^{2}(\mathbb{T}^{(p)}) \otimes \mathbb{C}^{m} = \ell^{2}(\mathbb{T}^{(p)}, \mathbb{C}^{m})$. An element $u \in \ell^{2}(\mathbb{T}^{(p)}, \mathbb{C}^{m})$ is considered as a function $u : \mathbb{T}^{(p)} \mapsto \mathbb{C}^{m}$ with $\sum_{x \in \mathbb{T}^{(p)}} \|u(x)\|^{2} < \infty$.
- On $\ell^2(\mathbb{T}^{(p)},\mathbb{C}^m)$ we consider the random Schrödinger operators

$$(H_{\lambda} u)(x) = \sum_{y:d(x,y)=1} u(y) + Au(x) + \lambda V(x) u(x).$$

A ∈ Sym(m) is the adjacency matrix of the finite graph G. A is a real, symmetric m × m matrix, A = A^t. It is also called the free vertical operator

- We consider the Hilbert space $\ell^{2}(\mathbb{T}^{(p)} \times \mathbb{G}) = \ell^{2}(\mathbb{T}^{(p)}) \otimes \mathbb{C}^{m} = \ell^{2}(\mathbb{T}^{(p)}, \mathbb{C}^{m})$. An element $u \in \ell^{2}(\mathbb{T}^{(p)}, \mathbb{C}^{m})$ is considered as a function $u : \mathbb{T}^{(p)} \mapsto \mathbb{C}^{m}$ with $\sum_{x \in \mathbb{T}^{(p)}} \|u(x)\|^{2} < \infty$.
- On $\ell^2(\mathbb{T}^{(p)},\mathbb{C}^m)$ we consider the random Schrödinger operators

$$(H_{\lambda} u)(x) = \sum_{y:d(x,y)=1} u(y) + Au(x) + \lambda V(x) u(x) .$$

- A ∈ Sym(m) is the adjacency matrix of the finite graph G. A is a real, symmetric m × m matrix, A = A^t. It is also called the free vertical operator
- V(x) ∈ Sym(m) for x ∈ B are i.i.d. random, real symmetric matrices with common distribution µ. We assume that all mixed moments of µ exist. We may think of V(x) as random matrix-valued potential.
- $\lambda \in \mathbb{R}$ is the disorder and supposed to be small.
- One may write $H_{\lambda} = \Delta \otimes 1 + 1 \otimes A + \lambda \bigoplus_{x \in \mathbb{T}^{(p)}} V(x).$

We need the following assumptions on the substitution matrix:

We need the following assumptions on the substitution matrix:

- For each p, q there is a natural number n such that (Sⁿ)_{p,q} is not zero. This means, that each tree T^(p) has vertices of each label q ∈ {1,...,s}.
- $||S|| < [\min\{S_{p,p}\}]^2$

We need the following assumptions on the substitution matrix:

- For each p, q there is a natural number n such that (Sⁿ)_{p,q} is not zero. This means, that each tree T^(p) has vertices of each label q ∈ {1,...,s}.
- $||S|| < [\min\{S_{p,p}\}]^2$
- With some weaker assumptions, Keller, Lenz and Warzel showed that the spectrum of the adjacency operator on T^(p) is purely a.c., independant on p and consists of finitely many intervals. Let us call this set Σ.

- We denote the eigenvalues of the free vertical operator A by $a_1 \leq a_2 \leq \ldots \leq a_m$.
- There is an orthogonal matrix $O \in O(m)$ such that $O^t A O = \operatorname{diag}(a_1, \ldots, a_m) = A_d$.
- Let Uu(x) = Ou(x) then U is unitary and

$$\mathcal{U}^* H_{\lambda} \mathcal{U} = \Delta \otimes 1 + 1 \otimes A_d + \lambda \bigoplus_{x \in \mathbb{B}} O^t V(x) O.$$

- We denote the eigenvalues of the free vertical operator A by $a_1 \leq a_2 \leq \ldots \leq a_m$.
- There is an orthogonal matrix $O \in O(m)$ such that $O^t A O = \text{diag}(a_1, \ldots, a_m) = A_d$.
- Let Uu(x) = Ou(x) then U is unitary and

$$\mathcal{U}^* H_{\lambda} \mathcal{U} = \Delta \otimes 1 + 1 \otimes A_d + \lambda \bigoplus_{x \in \mathbb{B}} O^t V(x) O.$$

- Hence by changing the distribution μ to $O^t \mu O$ we may assume w.l.o.g. that $A = A_d$ is diagonal.
- The free operator can be written as direct sum

$$H_0 = \Delta \otimes 1 + 1 \otimes A_d = \bigoplus_{k=1}^m \Delta + a_k$$

and has a.c. band spectrum $\bigcup_k (\Sigma + a_k)$.

Assume S and A are such that I_{A,S} = ∩_k(Σ + a_k) has non-empty interior.
 (For fixed A and S there exists a b₀ such that for b > b₀ the set I_{A,bS} has non-empty interior).

Theorem (S. 2012)

Under the assumptins above, there exists a dense open subset $I \subset I_{A,S}$ and an open neighborhood U of $\{0\} \times \mathbb{R}$ in \mathbb{R}^2 such that one obtains the following:

The spectrum of H_{λ} in $U_{\lambda} = \{E : (\lambda, E) \in U\}$ is purely absolutely continuous with probability one.

Some previous results:

- Klein (1994, 1996) a.c. spectrum and ballistic wave spreading for Anderson model on Bethe lattice (regular tree)
- Aizenman, Sims, Warzel (2006), different proof for ac spectrum
- Froese, Hasler, Spitzer (2007), different proof for ac spectrum
- Keller, Lenz, Warzel (2010), ac spectrum for Anderson model on trees of finite cone type
- Froese, Halasan, Hasler (2010), ac spectrum for Bethe strip of width 2
- Klein, S. (2011) a.c. spectrum and ballistic behavior for Bethe strip of arbitrary finite width
- Aizenman, Warzel (2011), a.c. spectrum for Anderson model on Bethe lattice for small disorder in bigger region; absence of mobility edge for small disorder; ballistic behavior in this regime

• The $m \times m$ Green's matrix function of H_{λ} is given by

$$\left[G_{\lambda}\left(x,y;z\right)\right]_{k,l} = \left\langle x,k | (H_{\lambda}-z)^{-1} | y,l \right\rangle$$

for $x, y \in \mathbb{T}^{(p)}$, $k, l \in \mathbb{G}$ and $z = E + i\eta$ with $E \in \mathbb{R}$, $\eta > 0$.

• The $m \times m$ Green's matrix function of H_{λ} is given by

$$[G_{\lambda}(x,y;z)]_{k,l} = \langle x,k|(H_{\lambda}-z)^{-1}|y,l\rangle$$

for $x, y \in \mathbb{T}^{(p)}$, $k, l \in \mathbb{G}$ and $z = E + i\eta$ with $E \in \mathbb{R}$, $\eta > 0$.

• We define the integrated, averaged density of states by

$$N_{\lambda}(E) = \frac{1}{m} \mathbb{E}\left(\sum_{k=1}^{m} \langle 0, k | \chi_{(-\infty,E]}(H_{\lambda}) | 0, k \rangle\right) \text{ for the root } 0 \in \mathbb{T}^{(p)}$$

• The $m \times m$ Green's matrix function of H_{λ} is given by

$$[G_{\lambda}(x,y;z)]_{k,l} = \langle x,k|(H_{\lambda}-z)^{-1}|y,l\rangle$$

for $x, y \in \mathbb{T}^{(p)}$, $k, l \in \mathbb{G}$ and $z = E + i\eta$ with $E \in \mathbb{R}$, $\eta > 0$.

• We define the integrated, averaged density of states by

$$N_{\lambda}(E) = \frac{1}{m} \mathbb{E}\left(\sum_{k=1}^{m} \langle 0, k | \chi_{(-\infty,E]}(H_{\lambda}) | 0, k \rangle\right) \quad \text{for the root } 0 \in \mathbb{T}^{(p)}$$

Theorem

There is an open neihborhood U of $\{0\} \times I$ as above, such that the following hold: The integrated, averaged density of states is absolutely continuous in U_{λ} , its density is strictly positive in U_{λ} and it depends continuously on $(\lambda, E) \in U$.

The Theorems above follow from the following:

Theorem

There is a dense open subset $I \subset I_{A,S}$ and an open neighborhood U of $\{0\} \times I$ in \mathbb{R}^2 , such that for all $x \in \mathbb{T}^{(p)}$ the continuous functions

$$(\lambda, E', \eta) \in U \times (0, \infty) \longrightarrow \mathbb{E}(|G_{\lambda}(x, x; E' + i\eta)|^2)$$
 (1)

and

$$(\lambda, E', \eta) \in U \times (0, \infty) \longrightarrow \mathbb{E}(G_{\lambda}(x, x; E' + i\eta))$$
 (2)

have continuous extensions to $U \times [0, \infty)$.

Idea of Proof

- Let G be a symmetric $m \times m$ matrix with positive imaginary part.
- On the set of pairs of positive semi-definite matrices *M* we define the exponential decaying functions

$$f_G(M_+, M_-) = \exp(i \operatorname{Tr}(GM_+ - G^*M_-))$$
.

 Let G_λ^(p)(z) denote the matrix Green's function at the root of T^(p) for the random operator H_λ and define

$$\xi_{\lambda,E,\eta}^{(p)} = \mathbb{E}\left(f_{G_{\lambda}^{(p)}(E+i\eta)}\right)$$

• There is a certain Banach space \mathcal{K} , such that $\left[\xi_{\lambda,E,\eta}^{(p)}\right]_p$ is in this Banach space for $\operatorname{Im}(z) > 0$ and it converges in \mathcal{K} for $\lambda = 0$, $E \in \mathring{I}_{A,S}$ and $\eta \downarrow 0$.

• Moreover, there is a continuous function $F : \mathbb{R}^2 \times (0, \infty) \times \mathcal{K} \to \mathcal{K}$, Frechet differentiable with respect to the element in \mathcal{K} , such that

$$F\left(\lambda, z, [\xi^{(p)}_{\lambda,z}]_{p}
ight) = 0 \; .$$

- Use the implicit function Theorem at λ = 0, E ∈ I ⊂ I_{A,S} to show that [ξ^(p)_{λ,E+iη}]_p extends continuously to (λ, E, η) ∈ U × [0,∞) where U is an open neighborhood of I which in turn is a dense open subset of the interior of I_{A,S}.
- Everything follows from these continuous extensions.