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Orthogonal Polynomials

@ Let i1 be a measure with compact and infinite support in C.

e By performing Gram-Schmidt orthogonalization to
{1,2,2%,23,...}, we arrive at the sequence of orthonormal

polynomlals {pn(z, 1)} n>0 satisfying

/(Cpn(Z; 1)Pm(z; 1)dp(z) = Spm.

@ The leading coefficient of p, is kn = Kkp(p) and satisfies
Kkn > 0.



@ Let ch(u) denote the convex hull of supp(u).
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Orthogonal Polynomials (cont.)

@ Let ch(u) denote the convex hull of supp(u).

@ For a set X, its polynomial convex hull is denoted Pch(X)
and is defined by

Pch(X) = N {z:1p(2) < Ipll=(x) } -
polynomials p # 0

e If C\ Pch(supp(x)) is simply connected, let
¢ : C \ Pch(supp(i)) — C\ D be the conformal map
satisfying ¢(o0) = oo and ¢/(o0) > 0.



@ The polynomial p,x

-1
n

denote by P,(z; 1).

is a monic polynomial, which we will
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Monic Orthogonal Polynomials

@ The polynomial p,x,! is a monic polynomial, which we will
denote by P,(z; ).

@ Pp(+; u) satisfies
1Pa(s i)l 2y = Inf{l| QI 2y : @ = 2"+ lower order terms},

a property we call the extremal property.



@ A measure is called regular if

lim &,

1/n
n—oo

= cap(supp(p))-
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@ A measure is called regular if

lim K,

1/n
n—oo

= cap(supp(p))-
@ Assuming only regularity, one can show that
im_{pn(z; )"

6(2)]

)

z & ch(p).
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Regularity and Root Asymptotics

@ A measure is called regular if

1/

lim x,'" = cap(supp(u)).

n—oo

@ Assuming only regularity, one can show that

lim |pa(zi )|V =0(2)] 2 & ch(p).

@ How much more do we need to assume about p to conclude

fim PrZ) )

, z & ch(u)?
n—o0 pp_1(Z; 1) )



o If M is the multlpllcation by variable operator on
span{l, z, z2

..} € L%(C, ) and Ry, is the projection onto
the space of polynomlals having degree at most m, then

nt1(z; 1) = det(z — RyMR,)
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Ratio Asymptotics

e If M is the muItipIication by variable operator on
span{l,z,22,...} C L?(C,p) and Ry, is the projection onto
the space of polynomlals having degree at most m, then

Fact

Ppi1(z; p) = det(z — RyMR,,).

o If we use {pn(-; 1)} n>0 as an orthonormal basis then Cramer's
rule yields:

= (2= Rp-1MRn_1); 1



OPUC and OPRL

@ Recall that for OPRL, there are sequences {ap, bp}nen with
a, > 0 and b, € R so that

xpn(X; 1) = ant1Pnr1(X; 1) + bpr1pa(x; 1) + anpa—1(x; 1)

e For OPUC, there is a sequence {ap}n>0 With a, € D so that
Pni1(z; p) = 2Pn(z; p) — @nPp(z; 1)

where P (z; 1) = z"P,(1/Z; ).



Ratio Asymptotics for OPUC and OPRL

@ From a 2004 result of Simon, one can deduce the following:
Theorem (Simon, 2004)

Suppose . has compact support in the real line and let {ap, bp} nen
be the recursion coefficients for the orthonormal polynomials.
Suppose N C N is a subsequence so that for every m € Z it holds
that

,,“JQO antm =1 , Jero\o bptm = 0.

neN neN
Then

pa(zip) _ z+Vz2—4

lim = , z & supp(p).
next Pn—1(zi 1) 2 # supp(p)




Ratio Asymptotics for OPUC and OPRL (cont.)

@ An even easier argument vyields:

Theorem

Suppose . has support in the unit circle and let {cp}n>0 be the
recursion coefficients. Suppose N' C N is a subsequence so that for
every m € 7, it holds that

fim aiysm = 0.
neN
Then
lim Pn(z; 11)

=z , z| > 1.
nex Pn-1(zip) i




Ratio Asymptotics for the Unit Disk

@ Our new result is the following:

Theorem (S., 2012)

Suppose i has support in the closed unit disk and suppose N' C N
is a subsequence so that

. -1
nILrQo knk,—1 = L.

neN

Then
noy Pn—1(z; 1)

and the convergence is uniform on compact subsets of C \ D.




Ratio Asymptotics for the Unit Disk (cont.)

Corollary (S., 2012)
Suppose 11 has support in the closed unit disk and suppose

1/n

lim s, " =1.

n—oo

Then there exists a subsequence N' C N of asymptotic density 1 so

that

lim M:z , |z| > 1

"oy Pn—1(z; 1)

and the convergence is uniform on compact subsets of C \ D.




@ Suppose we have two measures 1 and v.
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@ Suppose we have two measures 1 and v.

lim
exists?

pn(Z; 11)
n—o0 pn(z; 1/)

@ What relationship between p and v is required to ensure

@ For what values of z does the limit exist?
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@ Let p be arc-length measure on the unit circle so
pn(zip) = 2"
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pn(zip) = 2"

@ Let p be arc-length measure on the unit circle so

o Let dv(z) = f(z)du(z) + dvsing(2)
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Example: Measures on the Circle

@ Let u be arc-length measure on the unit circle so
pn(zip) = 2"
o Let dv(z) = f(z)du(z) + dvsing(2)
e If f is nice enough (i.e. log(f) € L), Szeg8's Theorem on the

unit circle implies

S(z) = lim Pn(2)

n—o0 zn

exists for all z ¢ D and provides us with an explicit form for S.



Uvarov Transform

@ An example of a relative asymptotic result we can prove is::
Theorem (S., 2012)
Suppose 1 and x € C satisfy

L2
lim ,JI_?;’(X’M” ;> =0.
oo ) ico |pi(xi )
Then for any t > 0 we have
. pn(Z; p+ tox
L";o(p(u)) 1, ¢ ()

and the convergence is uniform on compact subsets of C \ ch(y).




measure [ as

o For any x € C we can define the Christoffel Transform of a

dv¥(z) = |z — x|?du(z).
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measure [ as

o For any x € C we can define the Christoffel Transform of a

dv¥(z) = |z — x|?du(z).
@ Recall the extremal property:

1P i)l 2y = Inf{l| QI 2y : @ = 2"+ lower oreder terms}.
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Christoffel Transform

@ For any x € C we can define the Christoffel Transform of a

measure /i as
dv*(z) = |z — x[2du(z).

@ Recall the extremal property:

1P i)l 2y = Inf{l| QI 2y : @ = 2"+ lower oreder terms}.

o Therefore, (z — x)P,_1(z; v*) has the smallest L2(z) norm of
all monic degree n polynomials with a zero at x.



Christoffel Transform (cont.)

@ We can prove the following;:

Theorem (S., 2012)
Let v* be the Christoffel Transform of u and suppose

; |pn(x; )]
im — >
n—o0 > o |pi(x; 1)l

Then
lim (2 = X)pns(z 1) =1 ) z & ch(p)
v Polzip)

and the convergence is uniform on compact subsets of C \ ch(p).




Key to the Proof

@ As the preceding results indicate, the following fact is the key
to proving those theorems:

Theorem (S., 2012)

For each n € N choose a polynomial Q, of degree exactly n and
having leading coefficient T, so that

Q limy_.oo |Qnll 2y = 1,
Q lim,_oo Tn/kn(p) = 1.

Then
jim _9n(2)
n—o0 pp(z;

)= 1, zgchp)
and the convergence is uniform on compact subsets of C \ ch(u).

@ In fact, we may send n — oo through a subsequence.




Saff’'s Formula

@ The main ingredient in the proof of the key Theorem is the
following formula due to Saff:

Proposition (Saff, 2010)

Let Q be a polynomial of degree at most n and suppose
pn(z; 1) # 0. Then
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Saff’'s Formula

@ The main ingredient in the proof of the key Theorem is the
following formula due to Saff:

Proposition (Saff, 2010)

Let Q be a polynomial of degree at most n and suppose
pn(z; 1) # 0. Then

Qz) [Pt gy ()
pa(zip) [ leolwid g, )

f Pn Wﬂ)(Q(W —pn(w; “))du( )
f Ipn Wu)lzdu (w)




Saff's formula (cont.)

@ Now all it takes is the Cauchy-Schwartz inequality:

2
' [ el X =it gy < @) - ool

z

@ We expand the norm as

1QE) = pal:i 1) 220y = QU320 + 1Pal22y — 2Re(Q. P



Summary

@ Ratio asymptotic results are well understood on the unit circle
and real line in terms of the recursion coefficients for the
orthonormal polynomials.

@ Using some new techniques, we can prove analogous results
when no such recursion relation exists.

@ These techniques also yield results about the stability of he
orthonormal polynomials under certain perturbations of the
measure.



