
Ratio Asymptotics for General Orthogonal
Polynomials

Brian Simanek 1 (Caltech, USA)

Arizona Spring School of Analysis
and Mathematical Physics

Tucson, AZ

March 13, 2012

1This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1144469.



Orthogonal Polynomials

Let µ be a measure with compact and infinite support in C.

By performing Gram-Schmidt orthogonalization to
{1, z , z2, z3, . . .}, we arrive at the sequence of orthonormal
polynomials {pn(z ;µ)}n≥0 satisfying∫

C
pn(z ;µ)pm(z ;µ)dµ(z) = δnm.

The leading coefficient of pn is κn = κn(µ) and satisfies
κn > 0.



Orthogonal Polynomials (cont.)

Let ch(µ) denote the convex hull of supp(µ).

For a set X , its polynomial convex hull is denoted Pch(X )
and is defined by

Pch(X ) =
⋂

polynomials p 6= 0

{
z : |p(z)| ≤ ‖p‖L∞(X )

}
.

If C \ Pch(supp(µ)) is simply connected, let
φ : C \ Pch(supp(µ)) → C \ D be the conformal map
satisfying φ(∞) = ∞ and φ′(∞) > 0.
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Monic Orthogonal Polynomials

The polynomial pnκ
−1
n is a monic polynomial, which we will

denote by Pn(z ;µ).

Pn(·;µ) satisfies

‖Pn(·;µ)‖L2(µ) = inf{‖Q‖L2(µ) : Q = zn + lower order terms},

a property we call the extremal property.
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Regularity and Root Asymptotics

A measure is called regular if

lim
n→∞

κ
−1/n
n = cap(supp(µ)).

Assuming only regularity, one can show that

lim
n→∞

|pn(z ;µ)|1/n = |φ(z)| , z 6∈ ch(µ).

How much more do we need to assume about µ to conclude

lim
n→∞

pn(z ;µ)

pn−1(z ;µ)
= φ(z) , z 6∈ ch(µ)?
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Ratio Asymptotics

If M is the multiplication by variable operator on
span{1, z , z2, . . .} ⊆ L2(C, µ) and Rm is the projection onto
the space of polynomials having degree at most m, then

Fact

Pn+1(z ;µ) = det(z − RnMRn).

If we use {pn(·;µ)}n≥0 as an orthonormal basis then Cramer’s
rule yields:

Pn−1(z ;µ)

Pn(z ;µ)
= (z − Rn−1MRn−1)

−1
n,n.
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OPUC and OPRL

Recall that for OPRL, there are sequences {an, bn}n∈N with
an > 0 and bn ∈ R so that

xpn(x ;µ) = an+1pn+1(x ;µ) + bn+1pn(x ;µ) + anpn−1(x ;µ).

For OPUC, there is a sequence {αn}n≥0 with αn ∈ D so that

Pn+1(z ;µ) = zPn(z ;µ)− αnP
∗
n(z ;µ)

where P∗n(z ;µ) = znPn(1/z̄ ;µ).



Ratio Asymptotics for OPUC and OPRL

From a 2004 result of Simon, one can deduce the following:

Theorem (Simon, 2004)

Suppose µ has compact support in the real line and let {an, bn}n∈N
be the recursion coefficients for the orthonormal polynomials.
Suppose N ⊆ N is a subsequence so that for every m ∈ Z it holds
that

lim
n→∞
n∈N

an+m = 1 , lim
n→∞
n∈N

bn+m = 0.

Then

lim
n→∞
n∈N

pn(z ;µ)

pn−1(z ;µ)
=

z +
√

z2 − 4

2
, z 6∈ supp(µ).



Ratio Asymptotics for OPUC and OPRL (cont.)

An even easier argument yields:

Theorem

Suppose µ has support in the unit circle and let {αn}n≥0 be the
recursion coefficients. Suppose N ⊆ N is a subsequence so that for
every m ∈ Z it holds that

lim
n→∞
n∈N

αn+m = 0.

Then

lim
n→∞
n∈N

pn(z ;µ)

pn−1(z ;µ)
= z , |z | > 1.



Ratio Asymptotics for the Unit Disk

Our new result is the following:

Theorem (S., 2012)

Suppose µ has support in the closed unit disk and suppose N ⊆ N
is a subsequence so that

lim
n→∞
n∈N

κnκ
−1
n−1 = 1.

Then

lim
n→∞
n∈N

pn(z ;µ)

pn−1(z ;µ)
= z , |z | > 1

and the convergence is uniform on compact subsets of C \ D.



Ratio Asymptotics for the Unit Disk (cont.)

Corollary (S., 2012)

Suppose µ has support in the closed unit disk and suppose

lim
n→∞

κ
−1/n
n = 1.

Then there exists a subsequence N ⊆ N of asymptotic density 1 so
that

lim
n→∞
n∈N

pn(z ;µ)

pn−1(z ;µ)
= z , |z | > 1

and the convergence is uniform on compact subsets of C \ D.



Relative Asymptotics

Suppose we have two measures µ and ν.

What relationship between µ and ν is required to ensure

lim
n→∞

pn(z ;µ)

pn(z ; ν)

exists?

For what values of z does the limit exist?
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Example: Measures on the Circle

Let µ be arc-length measure on the unit circle so
pn(z ;µ) = zn.

Let dν(z) = f (z)dµ(z) + dνsing (z)

If f is nice enough (i.e. log(f ) ∈ L1), Szegő’s Theorem on the
unit circle implies

S(z) = lim
n→∞

pn(z ; ν)

zn

exists for all z 6∈ D and provides us with an explicit form for S .
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Uvarov Transform

An example of a relative asymptotic result we can prove is::

Theorem (S., 2012)

Suppose µ and x ∈ C satisfy

lim
n→∞

|pn(x ;µ)|2∑n−1
j=0 |pj(x ;µ)|2

= 0.

Then for any t > 0 we have

lim
n→∞

pn(z ;µ + tδx)

pn(z ;µ)
= 1 , z 6∈ ch(µ)

and the convergence is uniform on compact subsets of C \ ch(µ).



Christoffel Transform

For any x ∈ C we can define the Christoffel Transform of a
measure µ as

dνx(z) = |z − x |2dµ(z).

Recall the extremal property:

‖Pn(·;µ)‖L2(µ) = inf{‖Q‖L2(µ) : Q = zn+ lower oreder terms}.

Therefore, (z − x)Pn−1(z ; νx) has the smallest L2(µ) norm of
all monic degree n polynomials with a zero at x .
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Christoffel Transform (cont.)

We can prove the following:

Theorem (S., 2012)

Let νx be the Christoffel Transform of µ and suppose

lim
n→∞

|pn(x ;µ)|2∑n−1
j=0 |pj(x ;µ)|2

= 0.

Then

lim
n→∞
n∈N

(z − x)pn−1(z ; νx)

pn(z ;µ)
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Key to the Proof

As the preceding results indicate, the following fact is the key
to proving those theorems:

Theorem (S., 2012)

For each n ∈ N choose a polynomial Qn of degree exactly n and
having leading coefficient τn so that

1 limn→∞ ‖Qn‖L2(µ) = 1,

2 limn→∞ τn/κn(µ) = 1.

Then

lim
n→∞

Qn(z)

pn(z ;µ)
= 1 , z 6∈ ch(µ)

and the convergence is uniform on compact subsets of C \ ch(µ).

In fact, we may send n →∞ through a subsequence.



Saff’s Formula

The main ingredient in the proof of the key Theorem is the
following formula due to Saff:

Proposition (Saff, 2010)

Let Q be a polynomial of degree at most n and suppose
pn(z ;µ) 6= 0. Then

Q(z)

pn(z ;µ)
=

∫ pn(w ;µ)Q(w)
z−w dµ(w)∫ |pn(w ;µ)|2
z−w dµ(w)

= 1 +

∫ pn(w ;µ)(Q(w)−pn(w ;µ))
z−w dµ(w)∫ |pn(w ;µ)|2
z−w dµ(w)
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Saff’s formula (cont.)

Now all it takes is the Cauchy-Schwartz inequality:

∣∣∣∣∣
∫

pn(w ;µ)(Q(w)− pn(w ;µ))

z − w
dµ

∣∣∣∣∣
2

≤ CK‖Q(·)− pn(·;µ)‖2
L2(µ)

We expand the norm as

‖Q(·)− pn(·;µ)‖2
L2(µ) = ‖Q‖2

L2(µ) + ‖pn‖2
L2(µ) − 2Re〈Q, pn〉µ.



Summary

Ratio asymptotic results are well understood on the unit circle
and real line in terms of the recursion coefficients for the
orthonormal polynomials.

Using some new techniques, we can prove analogous results
when no such recursion relation exists.

These techniques also yield results about the stability of he
orthonormal polynomials under certain perturbations of the
measure.


