Bounds on fluctuations for Mallows random permutations:

Arizona School of Analysis and Mathematical Physics

Shannon Starr

University of Rochester
March 14, 2012

- Thermodynamic Limit for the Mallows Model on S_{n}. J. Math. Phys. 2009
- The length of the longest increasing subsequence of a random Mallows permutation. J. Theoret. Probab. 2011 (to appear) joint work with Carl Mueller, UR
- and joint work with Meg Walters, UR, in preparation.

1/18. What is a Mallows random permutation?

$$
\pi=(3,4,6,2,5,1)
$$

1/18. What is a Mallows random permutation?

$$
\pi=(3,4,6,2,5,1)
$$

Given $q \in(0, \infty)$,

$$
\mu_{n, q}(\{\pi\})=\frac{q^{l_{n}(\pi)}}{P_{n}(q)},
$$

where the number of inversions

$$
I_{n}(\pi)=\sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

1/18. What is a Mallows random permutation?

$$
\pi=(3,4,6,2,5,1)
$$

Given $q \in(0, \infty)$,

$$
\mu_{n, q}(\{\pi\})=\frac{q^{l_{n}(\pi)}}{P_{n}(q)},
$$

where the number of inversions

$$
I_{n}(\pi)=\sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

Fact: $P_{n}(q)$ is the "Poincaré polynomial"

$$
P_{n}(q)=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)
$$

1/18. What is a Mallows random permutation?

$$
\pi=(3,4,6,2,5,1)
$$

Given $q \in(0, \infty)$,

$$
\mu_{n, q}(\{\pi\})=\frac{q^{l_{n}(\pi)}}{P_{n}(q)},
$$

where the number of inversions

$$
I_{n}(\pi)=\sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

Fact: $P_{n}(q)$ is the "Poincaré polynomial"

$$
P_{n}(q)=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)=[n]!q \text {-factorial }
$$

2/18. Mean-field scaling

- Can define a classical Hamiltonian on S_{n} :

$$
H_{n}(\pi)=\frac{1}{n} I_{n}(\pi)=\frac{1}{n} \sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

This has the mean-field scaling (like in Ben's first lecture).

2/18. Mean-field scaling

- Can define a classical Hamiltonian on S_{n} :

$$
H_{n}(\pi)=\frac{1}{n} I_{n}(\pi)=\frac{1}{n} \sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

This has the mean-field scaling (like in Ben's first lecture).

- The "Poincaré polynomial" of S_{n} gives the partition function

$$
P_{n}\left(e^{-\beta / n}\right)=\sum_{\pi \in S_{n}} e^{-(\beta / n) I_{n}}=\sum_{\pi \in S_{n}} e^{-\beta H_{n}(\pi)}
$$

2/18. Mean-field scaling

- Can define a classical Hamiltonian on S_{n} :

$$
H_{n}(\pi)=\frac{1}{n} I_{n}(\pi)=\frac{1}{n} \sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

This has the mean-field scaling (like in Ben's first lecture).

- The "Poincaré polynomial" of S_{n} gives the partition function

$$
\begin{gathered}
P_{n}\left(e^{-\beta / n}\right)=\sum_{\pi \in S_{n}} e^{-(\beta / n) I_{n}}=\sum_{\pi \in S_{n}} e^{-\beta H_{n}(\pi)} \\
P_{n}(q)=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)
\end{gathered}
$$

2/18. Mean-field scaling

- Can define a classical Hamiltonian on S_{n} :

$$
H_{n}(\pi)=\frac{1}{n} I_{n}(\pi)=\frac{1}{n} \sum_{1 \leq i<j \leq n} 1\left\{\pi_{i}>\pi_{j}\right\}
$$

This has the mean-field scaling (like in Ben's first lecture).

- The "Poincaré polynomial" of S_{n} gives the partition function

$$
\begin{aligned}
P_{n}\left(e^{-\beta / n}\right) & =\sum_{\pi \in S_{n}} e^{-(\beta / n) I_{n}}=\sum_{\pi \in S_{n}} e^{-\beta H_{n}(\pi)} \\
P_{n}(q) & =\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right) \\
P_{n}\left(e^{-\beta / n}\right) & =\prod_{k=1}^{n}\left(\frac{1-e^{-\beta k / n}}{1-e^{-\beta / n}}\right) .
\end{aligned}
$$

3/18. q-Stirling formula

The Poincaré polynomial is the q-factorial

$$
P_{n}(q)=[n]!=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)
$$

3/18. q-Stirling formula

The Poincaré polynomial is the q-factorial

$$
P_{n}(q)=[n]!=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)
$$

We decided to look at $q=q_{n}(\beta)=\exp (-\beta / n)$.

$$
P_{n}\left(q_{n}(\beta)\right)=\left.[n]!\right|_{q=e^{-\beta / n}}
$$

3/18. q-Stirling formula

The Poincaré polynomial is the q-factorial

$$
P_{n}(q)=[n]!=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)
$$

We decided to look at $q=q_{n}(\beta)=\exp (-\beta / n)$.

$$
\begin{aligned}
P_{n}\left(q_{n}(\beta)\right) & =\left.[n]!\right|_{q=e^{-\beta / n}} \\
& =\exp \left(\sum_{k=1}^{n} \ln \left(\frac{1-e^{-\beta k / n}}{1-e^{-\beta / n}}\right)\right)
\end{aligned}
$$

3/18. q-Stirling formula

The Poincaré polynomial is the q-factorial

$$
P_{n}(q)=[n]!=\prod_{k=1}^{n}\left(\frac{1-q^{k}}{1-q}\right)
$$

We decided to look at $q=q_{n}(\beta)=\exp (-\beta / n)$.

$$
\begin{aligned}
P_{n}\left(q_{n}(\beta)\right) & =\left.[n]!\right|_{q=e^{-\beta / n}} \\
& =\exp \left(\sum_{k=1}^{n} \ln \left(\frac{1-e^{-\beta k / n}}{1-e^{-\beta / n}}\right)\right) \\
& \sim n!e^{n A(\beta)} B(\beta) \\
A(\beta)= & \int_{0}^{1} \ln \left(\frac{1-e^{-\beta x}}{\beta x}\right) d x, \quad B(\beta)=\sqrt{\frac{e^{\beta}-1}{\beta}} .
\end{aligned}
$$

4/18. A weak limit law

Example:

$$
\begin{aligned}
& \pi_{1}=3 \\
& x^{2} \\
& \pi_{2}=4 \\
& \pi_{3}=6 \\
& \pi_{4}=2 \\
& \pi_{5}=5 \\
& \pi_{6}=1
\end{aligned}
$$

Empirical measure on $[0,1]^{2}$

$$
\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}
$$

4/18. A weak limit law

Example:

$$
\begin{aligned}
& \pi_{1}=3 \\
& \pi_{2}=4 \\
& \pi_{3}=6 \\
& \pi_{4}=2 \\
& \pi_{5}=5 \\
& \pi_{6}=1
\end{aligned}
$$

Empirical measure on $[0,1]^{2}$

$$
\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}
$$

Theorem. For $\beta \in \mathbb{R}$ fixed, take $q_{n}(\beta)=\exp (-\beta / n)$.
There exists a density ρ_{β} on $[0,1]^{2}$ such that, for any continuous function φ on $[0,1]^{2}$,
$\mu_{n, q_{n}(\beta)}\left\{\pi \in S_{n}:\left|\int \varphi d \hat{\rho}_{n, \pi}-\int \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ as $n \rightarrow \infty$,
for each fixed $\epsilon>0$.

5/18. Self-consistent mean-field equation

Denote: $\mathbf{x}=\left(x^{1}, x^{2}\right) \in[0,1]^{2}$.
Boltzmann-Gibbs measure on $\left([0,1]^{2}\right)^{n}$:

$$
\begin{gathered}
d \mu_{n, \beta}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{e^{-\beta H_{n}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}}{Z_{n}(\beta)} d \mathbf{x}_{1} \cdots d \mathbf{x}_{n} \\
H_{n}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{1}{n} \sum_{1 \leq i<j \leq n} h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{1}\left\{\left(x_{i}^{1}-x_{j}^{1}\right)\left(x_{i}^{2}-x_{j}^{2}\right)<0\right\}
\end{gathered}
$$

5/18. Self-consistent mean-field equation

Denote: $\mathbf{x}=\left(x^{1}, x^{2}\right) \in[0,1]^{2}$.
Boltzmann-Gibbs measure on $\left([0,1]^{2}\right)^{n}$:

$$
\begin{gathered}
d \mu_{n, \beta}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{e^{-\beta H_{n}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}}{Z_{n}(\beta)} d \mathbf{x}_{1} \cdots d \mathbf{x}_{n} \\
H_{n}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{1}{n} \sum_{1 \leq i<j \leq n} h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{1}\left\{\left(x_{i}^{1}-x_{j}^{1}\right)\left(x_{i}^{2}-x_{j}^{2}\right)<0\right\}
\end{gathered}
$$

Then ρ_{β} is the unique measure on $[0,1]^{2}$ satisfying

$$
\frac{d \rho_{\beta}(\mathbf{x})}{d \mathbf{x}}=\frac{1}{\mathcal{Z}(\beta)} \exp \left(-\beta \int_{[0,1]^{2}} h\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \rho_{\beta}\left(\mathbf{x}^{\prime}\right)\right)
$$

5/18. Self-consistent mean-field equation

Denote: $\mathbf{x}=\left(x^{1}, x^{2}\right) \in[0,1]^{2}$.
Boltzmann-Gibbs measure on $\left([0,1]^{2}\right)^{n}$:

$$
\begin{gathered}
d \mu_{n, \beta}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{e^{-\beta H_{n}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}}{Z_{n}(\beta)} d \mathbf{x}_{1} \cdots d \mathbf{x}_{n} \\
H_{n}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{1}{n} \sum_{1 \leq i<j \leq n} h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
h\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{1}\left\{\left(x_{i}^{1}-x_{j}^{1}\right)\left(x_{i}^{2}-x_{j}^{2}\right)<0\right\}
\end{gathered}
$$

Then ρ_{β} is the unique measure on $[0,1]^{2}$ satisfying

$$
\begin{aligned}
\frac{d \rho_{\beta}(\mathbf{x})}{d \mathbf{x}} & =\frac{1}{\mathcal{Z}(\beta)} \exp \left(-\beta \int_{[0,1]^{2}} h\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \rho_{\beta}\left(\mathbf{x}^{\prime}\right)\right) \\
& =\frac{(\beta / 2) \sinh (\beta / 2)}{\left(e^{\beta / 4} \cosh \left(\frac{\beta}{2}[x-y]\right)-e^{-\beta / 4} \cosh \left(\frac{\beta}{2}[x+y-1]\right)\right)^{2}}
\end{aligned}
$$

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

Thm. Vershik, Kerov, Logan, Shepp

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

Thm. Vershik, Kerov, Logan, Shepp, Aldous, Diaconis, ...

6/18. Length of the Longest Increasing Subsequence

For $\pi \in S_{n}$,

$$
L_{n}(\pi)=\max \left\{k \leq n: \exists i_{1}<\cdots<i_{k} \text { s.t. } \pi_{i_{1}}<\cdots<\pi_{i_{k}}\right\} .
$$

Thm. Vershik, Kerov, Logan, Shepp, Aldous, Diaconis, ...
For the uniform measure μ_{n} on $S_{n}(\beta=0)$,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left\{\pi:\left|n^{-1 / 2} L_{n}(\pi)-2\right|>\epsilon\right\}=0
$$

for all $\epsilon>0$.

7/18. Hammersley's proof: $n^{-1 / 2} \mathbb{E} L_{n}$ converges

7/18. Hammersley's proof: $n^{-1 / 2} \mathbb{E} L_{n}$ converges

$$
\mathbb{E} L_{4 n^{2}} \geq 2 \mathbb{E} L_{n^{2}}
$$

7/18. Hammersley's proof: $n^{-1 / 2} \mathbb{E} L_{n}$ converges

$$
\mathbb{E} L_{4 n^{2}} \geq 2 \mathbb{E} L_{n^{2}}
$$

Extend the definition of L_{n} from permutations to point processes $L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\max \left\{k: \exists i_{1}<\cdots<i_{k}\right.$ s.t. $\left.h\left(\mathbf{x}_{i_{j}}, \mathbf{x}_{i_{\ell}}\right)=0, \forall j, \ell \leq k\right\}$
Also defined for random point processes.

7/18. Hammersley's proof: $n^{-1 / 2} \mathbb{E} L_{n}$ converges

$$
\mathbb{E} L_{4 n^{2}} \geq 2 \mathbb{E} L_{n^{2}}
$$

Extend the definition of L_{n} from permutations to point processes
$L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\max \left\{k: \exists i_{1}<\cdots<i_{k}\right.$ s.t. $\left.h\left(\mathbf{x}_{i_{j}}, \mathbf{x}_{i_{\ell}}\right)=0, \forall j, \ell \leq k\right\}$
Also defined for random point processes.

$$
\begin{aligned}
& \mathbb{E}\left[L_{\text {Poisson }\left((x+y)^{2}\right)}\right] \geq \mathbb{E}\left[L_{\text {Poisson }\left(x^{2}\right)}\right]+\mathbb{E}\left[L_{\text {Poisson }\left(y^{2}\right)}\right] \\
\Rightarrow & x^{-1} \mathbb{E}\left[L_{\text {Poisson }\left(x^{2}\right)}\right] \text { converges by Fekete's theorem. }
\end{aligned}
$$

7/18. Deuschel and Zeitouni's variational principle

Suppose ρ is a measure on $[0,1]^{2}$, satisfying

$$
\exists C<\infty, \quad \frac{1}{C} \leq \frac{d \rho(\mathbf{x})}{d \mathbf{x}} \leq C, \forall \mathbf{x} \in[0,1]^{2}
$$

7/18. Deuschel and Zeitouni's variational principle

Suppose ρ is a measure on $[0,1]^{2}$, satisfying
$\exists C<\infty, \quad \frac{1}{C} \leq \frac{d \rho(\mathbf{x})}{d \mathbf{x}} \leq C, \forall \mathbf{x} \in[0,1]^{2}$

Theorem. (Deuschel, Zeitouni) Let $\rho^{n}=$ i.i.d., product measure

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} \rho^{n}\left(\left|n^{-1 / 2} L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)-I(\rho)\right|>\epsilon\right)=0
$$

7/18. Deuschel and Zeitouni's variational principle

Suppose ρ is a measure on $[0,1]^{2}$, satisfying
$\exists C<\infty, \quad \frac{1}{C} \leq \frac{d \rho(\mathrm{x})}{d \mathrm{x}} \leq C, \forall \mathbf{x} \in[0,1]^{2}$

Theorem. (Deuschel, Zeitouni) Let $\rho^{n}=$ i.i.d., product measure

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} \rho^{n}\left(\left|n^{-1 / 2} L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)-I(\rho)\right|>\epsilon\right)=0
$$

$I(\rho)=\max \mathcal{I}(\rho, \gamma)$ over curves $\gamma:[0,1] \rightarrow[0,1]^{2}$,

- $\gamma^{1}(t), \gamma^{2}(t)$ non-decreasing

7/18. Deuschel and Zeitouni's variational principle

Suppose ρ is a measure on $[0,1]^{2}$, satisfying

$$
\exists C<\infty, \quad \frac{1}{C} \leq \frac{d \rho(\mathbf{x})}{d \mathbf{x}} \leq C, \forall \mathbf{x} \in[0,1]^{2}
$$

Theorem. (Deuschel, Zeitouni) Let $\rho^{n}=$ i.i.d., product measure

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} \rho^{n}\left(\left|n^{-1 / 2} L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)-I(\rho)\right|>\epsilon\right)=0
$$

$I(\rho)=\max \mathcal{I}(\rho, \gamma)$ over curves $\gamma:[0,1] \rightarrow[0,1]^{2}$,

- $\gamma^{1}(t), \gamma^{2}(t)$ non-decreasing

$$
I(\rho, \gamma)=2 \int_{0}^{1}\left[\frac{d \rho}{d \mathbf{x}}(\gamma(t)) \frac{d \gamma^{1}}{d t} \cdot \frac{d \gamma^{2}}{d t}\right]^{1 / 2} d t
$$

8/18. Idea of proof and extension to Mallows

$$
\mathcal{I}(\rho, \gamma)=2 \int_{0}^{1}\left[\frac{d \rho}{d \mathbf{x}}(\gamma(t)) \frac{d \gamma^{1}}{d t} \cdot \frac{d \gamma^{2}}{d t}\right]^{1 / 2} d t
$$

8/18. Idea of proof and extension to Mallows

$$
\mathcal{I}(\rho, \gamma)=2 \int_{0}^{1}\left[\frac{d \rho}{d \mathbf{x}}(\gamma(t)) \frac{d \gamma^{1}}{d t} \cdot \frac{d \gamma^{2}}{d t}\right]^{1 / 2} d t
$$

8/18. Idea of proof and extension to Mallows

$$
\mathcal{I}(\rho, \gamma)=2 \int_{0}^{1}\left[\frac{d \rho}{d \mathbf{x}}(\gamma(t)) \frac{d \gamma^{1}}{d t} \cdot \frac{d \gamma^{2}}{d t}\right]^{1 / 2} d t
$$

8/18. Idea of proof and extension to Mallows

$$
\mathcal{I}(\rho, \gamma)=2 \int_{0}^{1}\left[\frac{d \rho}{d \mathbf{x}}(\gamma(t)) \frac{d \gamma^{1}}{d t} \cdot \frac{d \gamma^{2}}{d t}\right]^{1 / 2} d t
$$

Thm. (Mueller and S) Let $q_{n}(\beta)=\exp (-\beta / n)$,

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} \mu_{n, q_{n}(\beta)}\left\{\left|n^{-1 / 2} L_{n}(\pi)-\mathcal{L}(\beta)\right|>\epsilon\right\}=0
$$

where

$$
\mathcal{L}(\beta)=2 \beta^{-1 / 2} \sinh ^{-1}\left(\sqrt{e^{\beta}-1}\right)
$$

9/18. Weak conditional correlations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

9/18. Weak conditional correlations

$$
\begin{aligned}
& \quad e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)} \\
& \text { Let } \# \text { boxes }=k^{2} .
\end{aligned}
$$

9/18. Weak conditional correlations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box.

9/18. Weak conditional correlations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box. $O(k)$ boxes in cross.

9/18. Weak conditional correlations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box. $O(k)$ boxes in cross. H_{n} has $\frac{1}{n}$ factor.

Exponential interaction for box $O(1 / k)$.

10/18. Coupling

"Coupling" two random variables X and Y : finding a common probability space (Ω, \mathcal{F}, P), joint distribution.

10/18. Coupling

"Coupling" two random variables X and Y : finding a common probability space (Ω, \mathcal{F}, P), joint distribution.
Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

10/18. Coupling

"Coupling" two random variables X and Y : finding a common probability space (Ω, \mathcal{F}, P), joint distribution.
Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.
Let U be Bernoulli-2/5 and V be Bernoulli-5/6, independently.
If $V=1$, let $X=Y=U$.
If $V=0$, let $X=1, Y=0$.

10/18. Coupling

"Coupling" two random variables X and Y : finding a common probability space (Ω, \mathcal{F}, P), joint distribution.
Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.
Let U be Bernoulli-2/5 and V be Bernoulli-5/6, independently.
If $V=1$, let $X=Y=U$.
If $V=0$, let $X=1, Y=0$.
For two random variables, can couple X and Y so that

$$
\mathbb{P}(X=Y)=1-\left\|\mu_{X}-\mu_{Y}\right\|_{T V}
$$

10/18. Coupling

"Coupling" two random variables X and Y : finding a common probability space (Ω, \mathcal{F}, P), joint distribution.
Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.
Let U be Bernoulli-2/5 and V be Bernoulli-5/6, independently.
If $V=1$, let $X=Y=U$.
If $V=0$, let $X=1, Y=0$.
For two random variables, can couple X and Y so that

$$
\begin{gathered}
\mathbb{P}(X=Y)=1-\left\|\mu_{X}-\mu_{Y}\right\|_{T V} \\
\left\|\mu_{X}-\mu_{Y}\right\|_{T V}=\max _{A}|P(X \in A)-P(Y \in A)|=\frac{1}{2} \int\left|f_{X}(x)-f_{Y}(x)\right| d x
\end{gathered}
$$

11/18. Weak conditional correlations redux

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box. $O(k)$ boxes in cross.

Exponential term $O(1 / k)$ per particle.

11/18. Weak conditional correlations redux

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box. $O(k)$ boxes in cross.

Exponential term $O(1 / k)$ per particle.

So fraction of points that are not coupled to IID: $O(1 / k)$.

12/18. Conclusion of proof

- For the empirical measure $\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}$, $\mu_{n, q_{n}(\beta)}\left\{\left|\int_{[0,1]^{2}} \varphi d \hat{\rho}_{n, \pi}-\int_{[0,1]^{2}} \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ for each continuous φ and each $\epsilon>0$.

12/18. Conclusion of proof

- For the empirical measure $\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}$, $\mu_{n, q_{n}(\beta)}\left\{\left|\int_{[0,1]^{2}} \varphi d \hat{\rho}_{n, \pi}-\int_{[0,1]^{2}} \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ for each continuous φ and each $\epsilon>0$.
- In particular for any finite number k^{2} boxes, the point counts converge in probability.

12/18. Conclusion of proof

- For the empirical measure $\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}$, $\mu_{n, q_{n}(\beta)}\left\{\left|\int_{[0,1]^{2}} \varphi d \hat{\rho}_{n, \pi}-\int_{[0,1]^{2}} \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ for each continuous φ and each $\epsilon>0$.
- In particular for any finite number k^{2} boxes, the point counts converge in probability.
- Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho=\rho_{\beta}$ with $O(1 / k)$ fraction of particle number fluctuation.

12/18. Conclusion of proof

- For the empirical measure $\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}$, $\mu_{n, q_{n}(\beta)}\left\{\left|\int_{[0,1]^{2}} \varphi d \hat{\rho}_{n, \pi}-\int_{[0,1]^{2}} \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ for each continuous φ and each $\epsilon>0$.
- In particular for any finite number k^{2} boxes, the point counts converge in probability.
- Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho=\rho_{\beta}$ with $O(1 / k)$ fraction of particle number fluctuation.
- Taking $k \rightarrow \infty$ after $n \rightarrow \infty$, and using monotonicity of L show that one can reduce to the Deuschel-Zeitouni optimization problem.

12/18. Conclusion of proof

- For the empirical measure $\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}$, $\mu_{n, q_{n}(\beta)}\left\{\left|\int_{[0,1]^{2}} \varphi d \hat{\rho}_{n, \pi}-\int_{[0,1]^{2}} \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ for each continuous φ and each $\epsilon>0$.
- In particular for any finite number k^{2} boxes, the point counts converge in probability.
- Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho=\rho_{\beta}$ with $O(1 / k)$ fraction of particle number fluctuation.
- Taking $k \rightarrow \infty$ after $n \rightarrow \infty$, and using monotonicity of L show that one can reduce to the Deuschel-Zeitouni optimization problem.
- Moreover, it is a calculus exercise to see that for $\rho=\rho_{\beta}$, $\mathcal{I}(\rho, \gamma)$ is attained at $\gamma=$ diagonal, and gives the formula

$$
\mathcal{L}(\beta)=2 \beta^{-1 / 2} \sinh ^{-1}\left(\sqrt{e^{\beta}-1}\right)
$$

12/18. Conclusion of proof

- For the empirical measure $\hat{\rho}_{n, \pi}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(i / n, \pi_{i} / n\right)}$, $\mu_{n, q_{n}(\beta)}\left\{\left|\int_{[0,1]^{2}} \varphi d \hat{\rho}_{n, \pi}-\int_{[0,1]^{2}} \varphi d \rho_{\beta}\right|>\epsilon\right\} \rightarrow 0$ for each continuous φ and each $\epsilon>0$.
- In particular for any finite number k^{2} boxes, the point counts converge in probability.
- Because of the coupling, we can couple inside each box to the Deuschel-Zeitouni model with $\rho=\rho_{\beta}$ with $O(1 / k)$ fraction of particle number fluctuation.
- Taking $k \rightarrow \infty$ after $n \rightarrow \infty$, and using monotonicity of L show that one can reduce to the Deuschel-Zeitouni optimization problem.
- Moreover, it is a calculus exercise to see that for $\rho=\rho_{\beta}$, $\mathcal{I}(\rho, \gamma)$ is attained at $\gamma=$ diagonal, and gives the formula

$$
\mathcal{L}(\beta)=2 \beta^{-1 / 2} \sinh ^{-1}\left(\sqrt{e^{\beta}-1}\right)
$$

After a reparametrization $\rho_{\beta}\left(x^{\prime}(x), y^{\prime}(y)\right) \propto(1-\beta x y)^{-2}$.

$13 / 18$. Bounds on the fluctuations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box.
$O(k)$ boxes in cross.
Coupling failure rate $O(1 / k)$.

$13 / 18$. Bounds on the fluctuations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box.
$O(k)$ boxes in cross.
Coupling failure rate $O(1 / k)$.

Normal fluctuation per box $O\left(n^{1 / 2} / k\right)$. Fraction of total $O\left(k / n^{1 / 2}\right)$

$13 / 18$. Bounds on the fluctuations

$$
e^{-\frac{\beta}{n} \sum_{i<j} h\left(x_{i}, y_{i} ; x_{j}, y_{j}\right)}
$$

Let $\#$ boxes $=k^{2}$.
$O\left(\frac{n}{k^{2}}\right)$ points per box.
$O(k)$ boxes in cross.
Coupling failure rate $O(1 / k)$.

Normal fluctuation per box $O\left(n^{1 / 2} / k\right)$. Fraction of total $O\left(k / n^{1 / 2}\right)$

$$
k=O\left(n^{1 / 4}\right)
$$

14/18. Bounds on the counts

Four-square problem:

n_{21}	n_{22}
n_{11}	n_{12}

$$
\begin{aligned}
\mathbb{P}_{q}\left(\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right)= & \mathbb{P}_{1}\left(\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right) \\
& \cdot W_{q}\left(\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right)
\end{aligned}
$$

$$
q^{n_{12} n_{21}} \frac{\left\{n_{11}+n_{12}\right\}!\left\{n_{11}+n_{21}\right\}!\left\{n_{12}+n_{22}\right\}!\left\{n_{21}+n_{22}\right\}!}{\left\{n_{11}\right\}!\left\{n_{12}\right\}!\left\{n_{21}\right\}!\left\{n_{22}\right\}!\left\{n_{11}+n_{12}+n_{21}+n_{22}\right\}!}
$$

where $\{n\}!=[n]!/ n!$.

15/18. Large deviations for 4-square

Stirling formula \rightarrow relative entropy:
$\frac{1}{n} \ln \mathbb{P}_{1}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)=\frac{1}{n} \ln \left(\frac{n!}{\prod_{i, j=1}^{2} n_{i j}!}\right) \rightarrow-\sum_{i, j=1}^{2} \rho_{i j} \ln \left(\frac{\rho_{i j}}{\left|\Lambda_{i j}\right|}\right)$
for $n \rightarrow \infty$, with $n_{i j} / n \rightarrow \rho_{i j}$, where $\left|\Lambda_{i j}\right|=$ area of sub-square $\Lambda_{i j}$.

15/18. Large deviations for 4-square

Stirling formula \rightarrow relative entropy:
$\frac{1}{n} \ln \mathbb{P}_{1}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)=\frac{1}{n} \ln \left(\frac{n!}{\prod_{i, j=1}^{2} n_{i j}!}\right) \rightarrow-\sum_{i, j=1}^{2} \rho_{i j} \ln \left(\frac{\rho_{i j}}{\left|\Lambda_{i j}\right|}\right)$
for $n \rightarrow \infty$, with $n_{i j} / n \rightarrow \rho_{i j}$, where $\left|\Lambda_{i j}\right|=$ area of sub-square $\Lambda_{i j}$. q-Stirling formula:

$$
\left.\frac{1}{n} \ln \{n\}!\right|_{q=\exp (-\beta / n)} \rightarrow A(\beta)=\int_{0}^{1} \ln \left(\frac{1-e^{-\beta x}}{\beta x}\right) d x
$$

15/18. Large deviations for 4-square

Stirling formula \rightarrow relative entropy:
$\frac{1}{n} \ln \mathbb{P}_{1}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)=\frac{1}{n} \ln \left(\frac{n!}{\prod_{i, j=1}^{2} n_{i j}!}\right) \rightarrow-\sum_{i, j=1}^{2} \rho_{i j} \ln \left(\frac{\rho_{i j}}{\left|\Lambda_{i j}\right|}\right)$
for $n \rightarrow \infty$, with $n_{i j} / n \rightarrow \rho_{i j}$, where $\left|\Lambda_{i j}\right|=$ area of sub-square $\Lambda_{i j}$. q-Stirling formula:

$$
\begin{gathered}
\left.\frac{1}{n} \ln \{n\}!\right|_{q=\exp (-\beta / n)} \rightarrow A(\beta)=\int_{0}^{1} \ln \left(\frac{1-e^{-\beta x}}{\beta x}\right) d x \\
\left.\frac{1}{n} \ln \left\{n_{i j}\right\}!\right|_{q=\exp (-\beta / n)} \rightarrow \rho_{i j} A\left(\beta \rho_{i j}\right)
\end{gathered}
$$

15/18. Large deviations for 4-square

Stirling formula \rightarrow relative entropy:
$\frac{1}{n} \ln \mathbb{P}_{1}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)=\frac{1}{n} \ln \left(\frac{n!}{\prod_{i, j=1}^{2} n_{i j}!}\right) \rightarrow-\sum_{i, j=1}^{2} \rho_{i j} \ln \left(\frac{\rho_{i j}}{\left|\Lambda_{i j}\right|}\right)$
for $n \rightarrow \infty$, with $n_{i j} / n \rightarrow \rho_{i j}$, where $\left|\Lambda_{i j}\right|=$ area of sub-square $\Lambda_{i j}$. q-Stirling formula:

$$
\begin{gathered}
\left.\frac{1}{n} \ln \{n\}!\right|_{q=\exp (-\beta / n)} \rightarrow A(\beta)=\int_{0}^{1} \ln \left(\frac{1-e^{-\beta x}}{\beta x}\right) d x \\
\left.\frac{1}{n} \ln \left\{n_{i j}\right\}!\right|_{q=\exp (-\beta / n)} \rightarrow \rho_{i j} A\left(\beta \rho_{i j}\right)
\end{gathered}
$$

$e_{\beta}\left(\begin{array}{ll}\rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22}\end{array}\right)=\lim _{\substack{n \rightarrow \infty \\ n_{i j} / n \rightarrow \rho_{i j}}} \frac{1}{n} \ln W_{q_{n}(\beta)}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)$

15/18. Large deviations for 4-square

Stirling formula \rightarrow relative entropy:
$\frac{1}{n} \ln \mathbb{P}_{1}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right)=\frac{1}{n} \ln \left(\frac{n!}{\prod_{i, j=1}^{2} n_{i j}!}\right) \rightarrow-\sum_{i, j=1}^{2} \rho_{i j} \ln \left(\frac{\rho_{i j}}{\left|\Lambda_{i j}\right|}\right)$
for $n \rightarrow \infty$, with $n_{i j} / n \rightarrow \rho_{i j}$, where $\left|\Lambda_{i j}\right|=$ area of sub-square $\Lambda_{i j}$. q-Stirling formula:

$$
\begin{gathered}
\left.\frac{1}{n} \ln \{n\}!\right|_{q=\exp (-\beta / n)} \rightarrow A(\beta)=\int_{0}^{1} \ln \left(\frac{1-e^{-\beta x}}{\beta x}\right) d x \\
\left.\frac{1}{n} \ln \left\{n_{i j}\right\}!\right|_{q=\exp (-\beta / n)} \rightarrow \rho_{i j} A\left(\beta \rho_{i j}\right)
\end{gathered}
$$

$e_{\beta}\left(\begin{array}{ll}\rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22}\end{array}\right)=\lim _{\substack{n \rightarrow \infty \\ n_{i j} / n \rightarrow \rho_{i j}}} \frac{1}{n} \ln W_{q_{n}(\beta)}\left(\begin{array}{ll}n_{11} & n_{12} \\ n_{21} & n_{22}\end{array}\right) \quad s+e_{\beta}$ concave

16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.

16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.
Ultimately, we get fluctuating particle number by coupling: $N_{n}=n \pm O\left(n^{3 / 4} \sqrt{\log n}\right)$ with high probability.

16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.
Ultimately, we get fluctuating particle number by coupling: $N_{n}=n \pm O\left(n^{3 / 4} \sqrt{\log n}\right)$ with high probability.

For the Deuschel-Zeitouni model can get easy bounds:
$L_{n}-\mathbb{E} L_{n}=O\left(n^{1 / 4}\right)$, with high probability.

16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.
Ultimately, we get fluctuating particle number by coupling: $N_{n}=n \pm O\left(n^{3 / 4} \sqrt{\log n}\right)$ with high probability.

For the Deuschel-Zeitouni model can get easy bounds:
$L_{n}-\mathbb{E} L_{n}=O\left(n^{1 / 4}\right)$, with high probability.
Problem. Actually while it is true $n^{-1 / 2} \mathbb{E} L_{n} \rightarrow I(\rho)$, we do not know how fast!

16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.
Ultimately, we get fluctuating particle number by coupling: $N_{n}=n \pm O\left(n^{3 / 4} \sqrt{\log n}\right)$ with high probability.

For the Deuschel-Zeitouni model can get easy bounds:
$L_{n}-\mathbb{E} L_{n}=O\left(n^{1 / 4}\right)$, with high probability.
Problem. Actually while it is true $n^{-1 / 2} \mathbb{E} L_{n} \rightarrow I(\rho)$, we do not know how fast!

We have to compare L_{n} in the Mallows measure to $L_{N_{n}}$ in the Deuschel-Zeitouni model.

16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.
Ultimately, we get fluctuating particle number by coupling:
$N_{n}=n \pm O\left(n^{3 / 4} \sqrt{\log n}\right)$ with high probability.
For the Deuschel-Zeitouni model can get easy bounds:
$L_{n}-\mathbb{E} L_{n}=O\left(n^{1 / 4}\right)$, with high probability.
Problem. Actually while it is true $n^{-1 / 2} \mathbb{E} L_{n} \rightarrow I(\rho)$, we do not know how fast!

We have to compare L_{n} in the Mallows measure to $L_{N_{n}}$ in the Deuschel-Zeitouni model.

We can either settle for $O\left(n^{(3 / 8)+}\right)$ bounds, or we can prove $O\left(n^{(1 / 4)+}\right)$ bounds along subsequences.

17/18. Cavity step?

All we need to do is show that the area on the right hand picture is $O\left(n^{-1 / 2}\right)$: each "box" is $O\left(n^{-1}\right)$ and there are $O\left(n^{1 / 2}\right)$ "boxes."

18/18. Local picture?

Aldous and Diaconis proved that on a horizontal slice, the length of the LIS behaves locally like a Poisson point process:

18/18. Local picture?

Aldous and Diaconis proved that on a horizontal slice, the length of the LIS behaves locally like a Poisson point process:

Tread carefully, the Poisson result is only locally, weakly ...

18/18. Local picture?

Aldous and Diaconis proved that on a horizontal slice, the length of the LIS behaves locally like a Poisson point process:

Tread carefully, the Poisson result is only locally, weakly ...

Thanks for your attention!

