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1/18. What is a Mallows random permutation?
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π = (3, 4, 6, 2, 5, 1)

Given q ∈ (0,∞),

µn,q({π}) =
qIn(π)

Pn(q)
,

where the number of inversions

In(π) =
∑

1≤i<j≤n
1{πi > πj} .

Fact: Pn(q) is the “Poincaré polynomial”

Pn(q) =
n∏

k=1

(
1− qk

1− q

)

= [n]! q-factorial
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2/18. Mean-field scaling

I Can define a classical Hamiltonian on Sn:

Hn(π) =
1

n
In(π) =

1

n

∑
1≤i<j≤n

1{πi > πj} .

This has the mean-field scaling (like in Ben’s first lecture).

I The “Poincaré polynomial” of Sn gives the partition function

Pn(e−β/n) =
∑
π∈Sn

e−(β/n)In =
∑
π∈Sn

e−βHn(π)

Pn(q) =
n∏

k=1

(
1− qk

1− q

)

Pn(e−β/n) =
n∏

k=1

(
1− e−βk/n

1− e−β/n

)
.
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I The “Poincaré polynomial” of Sn gives the partition function

Pn(e−β/n) =
∑
π∈Sn

e−(β/n)In =
∑
π∈Sn

e−βHn(π)

Pn(q) =
n∏

k=1

(
1− qk

1− q

)

Pn(e−β/n) =
n∏

k=1

(
1− e−βk/n

1− e−β/n

)
.

Shannon Starrr Mallows permutations: AZ School Analyis & Math-Physics



2/18. Mean-field scaling

I Can define a classical Hamiltonian on Sn:

Hn(π) =
1

n
In(π) =

1

n

∑
1≤i<j≤n

1{πi > πj} .

This has the mean-field scaling (like in Ben’s first lecture).
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3/18. q-Stirling formula

The Poincaré polynomial is the q-factorial

Pn(q) = [n]! =
n∏

k=1

(
1− qk

1− q

)
.

We decided to look at q = qn(β) = exp(−β/n).

Pn(qn(β)) = [n]!
∣∣∣
q=e−β/n

= exp

(
n∑

k=1

ln

(
1− e−βk/n

1− e−β/n

))

∼ n! enA(β)B(β)

A(β) =

∫ 1

0
ln

(
1− e−βx

βx

)
dx , B(β) =

√
eβ − 1

β
.
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4/18. A weak limit law

Example:

π1 = 3
π2 = 4
π3 = 6
π4 = 2
π5 = 5
π6 = 1 x1

x2

1

1

Empirical measure on [0, 1]2

. ρ̂n,π =
1

n

n∑
i=1

δ(i/n, πi/n)

Theorem. For β ∈ R fixed, take qn(β) = exp(−β/n).

There exists a density ρβ on [0, 1]2 such that,
for any continuous function ϕ on [0, 1]2,

µn,qn(β)

{
π ∈ Sn :

∣∣∣∣∫ ϕ d ρ̂n,π −
∫
ϕ dρβ

∣∣∣∣ > ε

}
→ 0 as n→∞,

for each fixed ε > 0.
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5/18. Self-consistent mean-field equation

Denote: x = (x1, x2) ∈ [0, 1]2.
Boltzmann-Gibbs measure on ([0, 1]2)n:

dµn,β(x1, . . . , xn) =
e−βHn(x1,...,xn)

Zn(β)
dx1 · · · dxn ,

Hn(x1, . . . , xn) =
1

n

∑
1≤i<j≤n

h(xi , xj) ,

h(xi , xj) = 1{(x1i − x1j )(x2i − x2j ) < 0} .

Then ρβ is the unique measure on [0, 1]2 satisfying

dρβ(x)

dx
=

1

Z(β)
exp

(
−β
∫
[0,1]2

h(x, x′)dρβ(x′)

)

=
(β/2) sinh(β/2)(

eβ/4 cosh(β2 [x − y ])− e−β/4 cosh(β2 [x + y − 1])
)2 .
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6/18. Length of the Longest Increasing Subsequence

For π ∈ Sn,

Ln(π) = max{k ≤ n : ∃i1 < · · · < ik s.t. πi1 < · · · < πik} .

1

1

2

2

3

3

4

4

5

5

6

6

π = (3, 4, 6, 2, 5, 1)π = (3, 4, 6, 2, 5, 1)π = (3, 4, 6, 2, 5, 1)

x1

x2

1

1

Thm. Vershik, Kerov, Logan, Shepp

, Aldous, Diaconis, . . .

For the uniform measure µn on Sn (β = 0),

lim
n→∞

µn

{
π : |n−1/2Ln(π)− 2| > ε

}
= 0 ,

for all ε > 0.
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7/18. Hammersley’s proof: n−1/2ELn converges

2n

2n

EL4n2 ≥ 2ELn2

Extend the definition of Ln from permutations to point processes

L(x1, . . . , xn) = max{k : ∃i1 < · · · < ik s.t. h(xij , xi`) = 0 , ∀j , ` ≤ k}
Also defined for random point processes.

E[LPoisson((x+y)2)] ≥ E[LPoisson(x2)] + E[LPoisson(y2)]

⇒ x−1E[LPoisson(x2)] converges by Fekete’s theorem.
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7/18. Deuschel and Zeitouni’s variational principle

Suppose ρ is a measure on [0, 1]2, satisfying

∃C <∞ ,
1

C
≤ dρ(x)

dx
≤ C , ∀x ∈ [0, 1]2

Theorem. (Deuschel, Zeitouni) Let ρn = i.i.d., product measure

∀ε > 0 , lim
n→∞

ρn(|n−1/2L(x1, . . . , xn)− I (ρ)| > ε) = 0 ,

I (ρ) = max I(ρ,γ) over curves γ : [0, 1]→ [0, 1]2,

I γ1(t), γ2(t) non-decreasing

I (ρ,γ) = 2

∫ 1

0

[
dρ

dx
(γ(t))

dγ1

dt
· dγ

2

dt

]1/2
dt .
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8/18. Idea of proof and extension to Mallows

I(ρ,γ) = 2

∫ 1

0

[
dρ

dx
(γ(t))

dγ1

dt
· dγ

2

dt

]1/2
dt

Thm. (Mueller and S) Let qn(β) = exp(−β/n),

∀ε > 0 , lim
n→∞

µn,qn(β){|n
−1/2Ln(π)− L(β)| > ε} = 0 ,

where
L(β) = 2β−1/2 sinh−1(

√
eβ − 1) .
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9/18. Weak conditional correlations

x

a

b

c

d

y

e
−β

n

∑
i<j

h(xi ,yi ;xj ,yj )

Let # boxes = k2.

O( n
k2 ) points per box.

O(k) boxes in cross.

Hn has 1
n factor.

Exponential interaction
for box O(1/k).
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10/18. Coupling

“Coupling” two random variables X and Y : finding a common
probability space (Ω,F ,P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

Let U be Bernoulli-2/5 and V be Bernoulli-5/6, independently.

If V = 1, let X = Y = U.

If V = 0, let X = 1, Y = 0.

For two random variables, can couple X and Y so that

P(X = Y ) = 1− ‖µX − µY ‖TV

‖µX−µY ‖TV = max
A
|P(X ∈ A)−P(Y ∈ A)| =

1

2

∫
|fX (x)−fY (x)| dx
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11/18. Weak conditional correlations redux

x

a

b

c

d

y

e
−β

n

∑
i<j

h(xi ,yi ;xj ,yj )

Let # boxes = k2.

O( n
k2 ) points per box.

O(k) boxes in cross.

Exponential term
O(1/k) per particle.

So fraction of points
that are not coupled to
IID: O(1/k).
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12/18. Conclusion of proof

I For the empirical measure ρ̂n,π = 1
n

∑n
i=1 δ(i/n,πi/n),

µn,qn(β){|
∫
[0,1]2 ϕ d ρ̂n,π −

∫
[0,1]2 ϕ dρβ| > ε} → 0 for each

continuous ϕ and each ε > 0.

I In particular for any finite number k2 boxes, the point counts
converge in probability.

I Because of the coupling, we can couple inside each box to the
Deuschel-Zeitouni model with ρ = ρβ with O(1/k) fraction of
particle number fluctuation.

I Taking k →∞ after n→∞, and using monotonicity of L
show that one can reduce to the Deuschel-Zeitouni
optimization problem.

I Moreover, it is a calculus exercise to see that for ρ = ρβ,
I(ρ,γ) is attained at γ = diagonal, and gives the formula

L(β) = 2β−1/2 sinh−1(
√

eβ − 1) .

After a reparametrization ρβ(x ′(x), y ′(y)) ∝ (1− βxy)−2.
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13/18. Bounds on the fluctuations

x

a

b

c

d

y

e
−β

n

∑
i<j

h(xi ,yi ;xj ,yj )

Let # boxes = k2.

O( n
k2 ) points per box.

O(k) boxes in cross.

Coupling failure rate
O(1/k).

Normal fluctuation per
box O(n1/2/k). Fraction
of total O(k/n1/2)

k = O(n1/4)
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14/18. Bounds on the counts

Four-square problem:

n11 n12

n21 n22 Pq

(
n11 n12
n21 n22

)
= P1

(
n11 n12
n21 n22

)

·Wq

(
n11 n12
n21 n22

)

qn12n21
{n11 + n12}!{n11 + n21}!{n12 + n22}!{n21 + n22}!
{n11}!{n12}!{n21}!{n22}!{n11 + n12 + n21 + n22}!

where {n}! = [n]!/n!.
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15/18. Large deviations for 4-square

Stirling formula → relative entropy:

1

n
lnP1

(
n11 n12
n21 n22

)
=

1

n
ln

(
n!∏2

i ,j=1 nij !

)
→ −

2∑
i ,j=1

ρij ln

(
ρij
|Λij |

)
for n→∞, with nij/n→ ρij , where |Λij | = area of sub-square Λij .

q-Stirling formula:

1

n
ln{n}!

∣∣
q=exp(−β/n) → A(β) =

∫ 1

0
ln

(
1− e−βx

βx

)
dx .

1

n
ln{nij}!

∣∣
q=exp(−β/n) → ρijA(βρij) .

eβ

(
ρ11 ρ12
ρ21 ρ22

)
= lim

n→∞
nij/n→ρij

1

n
lnWqn(β)

(
n11 n12
n21 n22

)

s + eβ concave
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16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling:
Nn = n ± O(n3/4

√
log n) with high probability.

For the Deuschel-Zeitouni model can get easy bounds:
Ln − ELn = O(n1/4), with high probability.

Problem. Actually while it is true n−1/2ELn → I (ρ), we do not
know how fast!

We have to compare Ln in the Mallows measure to LNn in the
Deuschel-Zeitouni model.

We can either settle for O(n(3/8)+) bounds,

or we can prove O(n(1/4)+) bounds along subsequences.
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Problem. Actually while it is true n−1/2ELn → I (ρ), we do not
know how fast!

We have to compare Ln in the Mallows measure to LNn in the
Deuschel-Zeitouni model.

We can either settle for O(n(3/8)+) bounds,

or we can prove O(n(1/4)+) bounds along subsequences.
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17/18. Cavity step?

All we need to do is show that the area on the right hand picture is
O(n−1/2): each “box” is O(n−1) and there are O(n1/2) “boxes.”
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18/18. Local picture?

Aldous and Diaconis proved that on a horizontal slice, the length
of the LIS behaves locally like a Poisson point process:

Intensity
√

1−y
1−x

LIS to NE

LIS to SW
Intensity

√
y
x

∆y

Tread carefully, the Poisson result is only locally, weakly . . .

Thanks for your attention!
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