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1/18. What is a Mallows random permutation?

1 2 3 4 5 6

T =(3,4,6,2,5,1)
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1/18. What is a Mallows random permutation?

1 2 3 4 5 6

T =(3,4,6,2,5,1)

Given g € (0, 00),

q
png({}) =
where the number of inversions

In(m) = Z {m; > m;}.

1<i<j<n
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1/18. What is a Mallows random permutation?

1 2 3 4 5 6

T =(3,4,6,2,5,1)

Given g € (0, 00),

q
tng({7}) =
where the number of inversions
In(m) = Z {m; > m;}.
1<i<j<n
Fact: P,(q) is the “Poincaré polynomial’
n
1- qk

k=1
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1/18. What is a Mallows random permutation?

1 2 3 4 5 6

T =(3,4,6,2,5,1)

Given g € (0, 00),

q
png({}) =
where the number of inversions

In(m) = Z {m; > m;}.

1<i<j<n

Fact: P,(q) is the “Poincaré polynomial’

Pn(q) = H (1 — qk> = [n]! g-factorial

k=1 l1—q
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2/18. Mean-field scaling

» Can define a classical Hamiltonian on S;:

Fo(r) = T ) = 3 Umi > ).

1<i<j<n

This has the mean-field scaling (like in Ben's first lecture).
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2/18. Mean-field scaling

» Can define a classical Hamiltonian on S;:
1 1
Hp(r) = = S g
Am) = h(m) = Y Um> )
1<i<j<n

This has the mean-field scaling (like in Ben's first lecture).
» The “Poincaré polynomial” of S, gives the partition function

Po(e /) = 3 e B/mh = 3 Bt

TEeSy TEeSy
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2/18. Mean-field scaling

» Can define a classical Hamiltonian on S;:
1 1
Hp(r) = = S g
Am) = h(m) = Y Um> )
1<i<j<n

This has the mean-field scaling (like in Ben's first lecture).
» The “Poincaré polynomial” of S, gives the partition function

Po(e /) = 3 e B/mh = 3 Bt

TEeSy TEeSy

Pa(q) = ;1211(11__(1:)
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2/18. Mean-field scaling

» Can define a classical Hamiltonian on S;:
1 1
Hp(r) = = S g
Am) = h(m) = Y Um> )
1<i<j<n

This has the mean-field scaling (like in Ben's first lecture).
» The “Poincaré polynomial” of S, gives the partition function

(e78/m) = 3 e (Bimh = 37 e 0Hn(m)

TEeSy TEeSy
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3/18. g-Stirling formula

The Poincaré polynomial is the g-factorial

i) =t =TT (5-2).

k=1 1-q
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3/18. g-Stirling formula

The Poincaré polynomial is the g-factorial

i) =t =TT (5-2).

1-gq
k=1
We decided to look at g = gn(5) = exp(—05/n).

Pn(an(B)) = [n]!

q:e_ﬁ/"
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3/18. g-Stirling formula

The Poincaré polynomial is the g-factorial

i) =t =TT (5-2).

1-gq
k=1
We decided to look at g = gn(5) = exp(—05/n).

Pn(an(B)) = [n]!

q:e_ﬁ/"

u 1— e Pk/n
= exp (Z In (1_6/”>>
k=1 €
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3/18. g-Stirling formula

The Poincaré polynomial is the g-factorial

i) =t =TT (5-2).

1-gq
k=1
We decided to look at g = gn(5) = exp(—05/n).

Pn(an(B)) = [n]!

q:e_ﬁ/"

u 1— e Pk/n
= exp (Z In (1_6/”>>
k=1 €

~ nl e™P)B(p)

A(ﬂ)zfolln(l_/jex_w>dx7 B(S) = eﬁﬁ_l-
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4/18. A weak limit law

Example:
. )
=3 2 Empirical measure on [0, 1]
m =4 1’“ n
1
[ ] ~

T3 = 6 ° Pnr = ; Z(S(,'/n’m/n)
T4 = 2 ° ® i=1
s — 5 °
e = 1 L > 1

X
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4/18. A weak limit law

Example:

. )
=3 2 Empirical measure on [0, 1]
m =4 1’“ n

R 1
T3 = 6 b ° Pnr = ; Z(S(,'/n’m/n)
T4 = ° ® i=1
Ty = 5 °

X

Theorem. For 5 € R fixed, take gn(5) = exp(—/5/n).

There exists a density pg on [0, 1]2 such that,
for any continuous function ¢ on [0, 1]?,

Hn,qa(8) {71'65,, : ‘/‘Pdﬁn,n_/@dp/j‘ >6}—>0 as n — oo,

for each fixed € > 0.
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5/18. Self-consistent mean-field equation

Denote: x = (x1,x2) € [0,1]2.
Boltzmann-Gibbs measure on ([0, 1]2)":

e_ﬁHn(xla---vxn)

dun,B(X1,...,xn) = T,@)dxl o dxy,
n

1
H,«,(X]_,...,Xn) = ; Z h(X,’,Xj),

1<i<j<n

h(xi,x;) = 1{(x} — le)(><2 — X 2) < 0}.
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5/18. Self-consistent mean-field equation

Denote: x = (x,x?) € [0, 1]2.
Boltzmann-Gibbs measure on ([0, 1]2)":

e_ﬁHn(xla---vxn)

dun,B(X1,...,xn) = T,@)dxl o dxy,
n

1
H,«,(X]_,...,Xn) = ; Z h(X,’,Xj),

1<i<j<n

h(xi,x;) = H{(x} —x")(x? — x7) < 0}.

Then pg is the unique measure on [0, 1]? satisfying

dps(x) 1 <o | — X X' <
i ~ Z0) p( 8 - h(x,x")dps( ))
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5/18. Self-consistent mean-field equation

Denote: x = (x1,x2) € [0,1]2.
Boltzmann-Gibbs measure on ([0, 1]2)":

e_ﬁHn(xla---vxn)
dpnp(X1, ..., Xn) = ——=—F=——dx1 -+ dX,,

1
H,«,(X]_,...,Xn) = ; Z h(X,’,Xj),

h(xi, %) = (x| —x})(xF - x7) < 0}.

j
Then pg is the unique measure on [0, 1]? satisfying
dpg(x) 1 / /

= exp | =5 h(x,x")dpg(x
i Z0) o (x,x')dps(x’)
(8/2)sinh(3/2)

2
(e8/4 cosh(2[x — y]) — e~/ cosh(5[x + y — 1]))



6/18. Length of the Longest Increasing Subsequence

Form e S,,

Lo(m) = max{k<n:3h < - <igstm <---<mj}.
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6/18. Length of the Longest Increasing Subsequence

Form e S,,

Lo(m) = max{k<n:3h < - <igstm <---<mj}.

m=(3,4,6,2,5,1) .
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6/18. Length of the Longest Increasing Subsequence

Form e S,,

Lo(m) = max{k<n:3h < - <igstm <---<mj}.

T =(3,4,6,2,5,1)

Thm. Vershik, Kerov, Logan, Shepp
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6/18. Length of the Longest Increasing Subsequence

Form e S,,

Lo(m) = max{k<n:3h < - <igstm <---<mj}.

T =(3,4,6,2,5,1)

Thm. Vershik, Kerov, Logan, Shepp , Aldous, Diaconis, ...
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6/18. Length of the Longest Increasing Subsequence

Form e S,,

Lo(m) = max{k<n:3h < - <igstm <---<mj}.

T =(3,4,6,2,5,1)

Thm. Vershik, Kerov, Logan, Shepp , Aldous, Diaconis, ...
For the uniform measure p, on S, (5 =0),

: . |p—1/2 _ —
nI|_>nC1>O,u,, {77 cnTH ALy () = 2] > e} =0,

for all ¢ > 0.
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7/18. Hammersley's proof: n~1/2EL, converges

2n

2n
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7/18. Hammersley's proof: n~1/2EL, converges

onk----- s-----1 ELy. > 2EL,»
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7/18. Hammersley's proof: n~1/2EL, converges

onk----- s-----1 ELy. > 2EL,»

Extend the definition of L, from permutations to point processes
L(x1,...,xp) = max{k : Jip <--- <k st h(x;,x;,) =0, Vj, £ <k}

Also defined for random point processes.
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7/18. Hammersley's proof: n~1/2EL, converges

onk----- s-----1 ELy. > 2EL,»

Extend the definition of L, from permutations to point processes
L(x1,...,xp) = max{k : Jip <--- <k st h(x;,x;,) =0, Vj, £ <k}
Also defined for random point processes.

IE[LPoisson((><—|—y)2)] 2 IE[LPoisson(x2)] +E[LPoisson(y2)]

= XilE[Lpoisson()@)] converges by Fekete's theorem.
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7/18. Deuschel and Zeitouni's variational principle

Suppose p is a measure on [0, 1]?, satisfying

1 _ dp(x)
IC 1.
S TS Tax

< C,vxel0,1)?
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7/18. Deuschel and Zeitouni's variational principle

Suppose p is a measure on [0, 1]?, satisfying

1 _ dp(x) 2
~ < <
IC<oo, =< LX< vxeo

Theorem. (Deuschel, Zeitouni) Let p"

= I.i.d., product measure

Ve> 0, lim (0 2L(xt, o xn) — 1(p) > €)

0,
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7/18. Deuschel and Zeitouni's variational principle

Suppose p is a measure on [0, 1]?, satisfying

1 _ dp(x) 2
~ < <
IC<oo, =< LX< vxeo

Theorem. (Deuschel, Zeitouni) Let p" = i.i.d., product measure

Ve> 0, lim (I V2L(x1, . xa) = ()| > ©) = O,

I(p) = maxZ(p,~) over curves ~ : [0,1] — [0, 1]?,
» v1(t), v2(t) non-decreasing
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7/18. Deuschel and Zeitouni's variational principle

Suppose p is a measure on [0, 1]?, satisfying

1 _ dp(x) 2
~ < <
IC<oo, =< LX< vxeo

Theorem. (Deuschel, Zeitouni) Let p" = i.i.d., product measure

Ve> 0, lim (I V2L(x1, . xa) = ()| > ©) = O,

I(p) = maxZ(p,~) over curves ~ : [0,1] — [0, 1]?,
» v1(t), v2(t) non-decreasing

1 1 211/2
o) =2 ["p( (1) 4O

ax\ V) e A
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8/18. ldea of proof and extension to Mallows

1 1 271/2
dp dvy+ dv
I =2 | [ZE(v() == - ==| dt
(p,7) /O [dx V(1) —; dt}
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8/18. ldea of proof and extension to Mallows

1 1 271/2
dp dvy+ dv
I =2 | [ZE(v() == - ==| dt
(p,7) /O [dx V(1) —; dt}

Thm. (Mueller and S) Let g,(3) = exp(—5/n),
Ye>0,  lim fin g, {0 "2La(m) = L(B)] > €} = 0,

where

L(B) = 287 %sinh 1 (v ef —1).
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9/18. Weak conditional correlations

/. Cc
— 25 h(xinyiig.y))
be_| e

y k//%

rd

n o]
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— 25 h(xinyiig.y))
be_| e

>< Let # boxes = k.
ye—1T—1 F'x

rd

n o]
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9/18. Weak conditional correlations

/. Cc
— 25 h(xinyiig.y))
be_| e

>< Let # boxes = k.
ye—1T—1 F'x
O(4z) points per box.

rd

n o]
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9/18. Weak conditional correlations

/. Cc
— 25 h(xinyiig.y))
be_| e

>< Let # boxes = k.
ye—1T—1 F'x
O(4z) points per box.

O(k) boxes in cross.

rd

n o]
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9/18. Weak conditional correlations

/. Cc
— 25 h(xinyiig.y))
be_| e 'Y

>< Let # boxes = k.
ye—1T—1 F'x
O(4z) points per box.

O(k) boxes in cross.

rd

H, has % factor.

Exponential interaction
for box O(1/k).

n o]
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10/18. Coupling

“Coupling” two random variables X and Y: finding a common
probability space (2, F, P), joint distribution.
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10/18. Coupling

“Coupling” two random variables X and Y: finding a common
probability space (2, F, P), joint distribution.
Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.
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10/18. Coupling

“Coupling” two random variables X and Y: finding a common
probability space (2, F, P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

Let U be Bernoulli-2/5 and V' be Bernoulli-5/6, independently.
fv=1letX=Y=U.

IfV=0leteX=1 Y=0.
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10/18. Coupling

“Coupling” two random variables X and Y: finding a common
probability space (2, F, P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

Let U be Bernoulli-2/5 and V' be Bernoulli-5/6, independently.
fv=1letX=Y=U.

IfV=0leteX=1 Y=0.

For two random variables, can couple X and Y so that

P(X =Y) =1~ |lux — pyl7v
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10/18. Coupling

“Coupling” two random variables X and Y: finding a common
probability space (2, F, P), joint distribution.

Ex. X is Bernoulli-1/2, Y is Bernoulli-1/3.

Let U be Bernoulli-2/5 and V' be Bernoulli-5/6, independently.
fv=1letX=Y=U.

IfV=0leteX=1 Y=0.

For two random variables, can couple X and Y so that

P(X =Y) =1~ |lux — pyl7v

lix=nliry = max|P(X € A)=P(Y € A) = 5 [ 1)~ Fr ()]
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11/18. Weak conditional correlations redux

/. ¢ —L 5 h(x.yig.y))

e i<j

b .\
Let # boxes = k2.

y .,//>;/\ O(4z) points per box.

O(k) boxes in cross.

26 ] Exponential term
\. O(1/k) per particle.
d
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11/18. Weak conditional correlations redux

/. ¢ —L 5 h(x.yig.y))

e i<j

b .\
Let # boxes = k2.

y .,//>;/\ O(4z) points per box.

O(k) boxes in cross.

26 ] Exponential term
\. O(1/k) per particle.
d

So fraction of points
that are not coupled to

IID: O(1/k).
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12/18. Conclusion of proof

> For the empirical measure = £ 37 (i /nmi/n):

Fon,gn(3) 1] f[0,1]2 odpnx — f[071]2 pdpg| > €} — 0 for each
continuous ¢ and each ¢ > 0.
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12/18. Conclusion of proof

> For the empirical measure = £ 37 (i /nmi/n):
Nn,qn(ﬁ){‘ f[o,1]2 odpng — f[071]2 2 dPB| > e} — 0 for each
continuous ¢ and each ¢ > 0.

» In particular for any finite number k2 boxes, the point counts

converge in probability.
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12/18. Conclusion of proof

» For the empirical measure p, » = %27:1 (i /nmi/n):
Nn,qn(ﬁ){‘ f[o,1]2 o dpnx— f[071]2 ¢dpg| > €} — 0 for each
continuous ¢ and each ¢ > 0.

» In particular for any finite number k2 boxes, the point counts
converge in probability.

» Because of the coupling, we can couple inside each box to the

Deuschel-Zeitouni model with p = pg with O(1/k) fraction of
particle number fluctuation.
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12/18. Conclusion of proof

> For the empirical measure = £ 37 (i /i /)

Nn,qn(ﬁ){‘ f[o,1]2 o dpnx— f[071]2 ¢dpg| > €} — 0 for each
continuous ¢ and each ¢ > 0.

» In particular for any finite number k2 boxes, the point counts
converge in probability.

» Because of the coupling, we can couple inside each box to the
Deuschel-Zeitouni model with p = pg with O(1/k) fraction of
particle number fluctuation.

» Taking k — oo after n — oo, and using monotonicity of L
show that one can reduce to the Deuschel-Zeitouni
optimization problem.
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12/18. Conclusion of proof

>

For the empirical measure pp = 137, (i /i /)

Nn,qn(ﬁ){‘ f[o,1]2 o dpnx— f[071]2 ¢dpg| > €} — 0 for each
continuous ¢ and each ¢ > 0.

In particular for any finite number k2 boxes, the point counts
converge in probability.

Because of the coupling, we can couple inside each box to the
Deuschel-Zeitouni model with p = pg with O(1/k) fraction of
particle number fluctuation.

Taking k — oo after n — oo, and using monotonicity of L
show that one can reduce to the Deuschel-Zeitouni
optimization problem.

Moreover, it is a calculus exercise to see that for p = pg,
Z(p,~y) is attained at v = diagonal, and gives the formula

L(B) = 287 %sinh1(Vef —1).

Shannon Starrr Mallows permutations: AZ School Analyis & Math-Physics



12/18. Conclusion of proof

>

For the empirical measure pp = 137, (i /i /)

Nn,qn(ﬁ){‘ f[o,1]2 o dpnx— f[071]2 ¢dpg| > €} — 0 for each
continuous ¢ and each ¢ > 0.

In particular for any finite number k2 boxes, the point counts
converge in probability.

Because of the coupling, we can couple inside each box to the
Deuschel-Zeitouni model with p = pg with O(1/k) fraction of
particle number fluctuation.

Taking k — oo after n — oo, and using monotonicity of L
show that one can reduce to the Deuschel-Zeitouni
optimization problem.

Moreover, it is a calculus exercise to see that for p = pg,
Z(p,~y) is attained at v = diagonal, and gives the formula

L(B) = 287 %sinh1(Vef —1).

After a reparametrization pg(x’(x),y’(y)) o (1 — Bxy) 2.
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13/18. Bounds on the fluctuations

/ ¢ _é Z h(Xiyyi;Xj7}/j)

e i<

b.\

Let # boxes = k2.

y .,//% O(4z) points per box.

O(k) boxes in cross.

20 ] Coupling failure rate
O(1/k).

o o]
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13/18. Bounds on the fluctuations

/ ¢ _é Z h(Xiyyi;Xj7}/j)

e i<

b .\
Let # boxes = k2.

y .,//% O(4z) points per box.

O(k) boxes in cross.

20 ] Coupling failure rate
O(1/k).

o o]

Normal fluctuation per
box O(n'/2/k). Fraction
of total O(k/n'/?)
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13/18. Bounds on the fluctuations

/ ¢ _é Z h(Xiyyi;Xj7}/j)

e i<

b.\

Let # boxes = k2.

y .,//% O(4z) points per box.

O(k) boxes in cross.

20 ] Coupling failure rate
O(1/k).

Normal fluctuation per
box O(n'/2/k). Fraction
of total O(k/n'/?)

o o]

k = O(n'/%)
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14/18. Bounds on the counts

Four-square problem:

N1 Ny P, mi M2\ _ P, mi N2
M1 nz M1 nz

ni N
- W,
ni n» q n1 N

oo 1M1+ n2} g + mog PN + noo {1 + nao}!
{nu P{n2}{no1 }{na2 }1{n11 + nmo + no1 + noo}!

where {n}! = [n]!/n!.
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15/18. Large deviations for 4-square

Stirling formula — relative entropy:

1 nii n12> 1 n! < >
— InP =—-In|{ ——— iln
n ! <n21 n22 n 2. nj;! Z P Al

ij=1 ij=1

for n — oo, with njj/n — pj;, where |Ajj| = area of sub-square Aj;.
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15/18. Large deviations for 4-square

Stirling formula — relative entropy:

1 nii n12> 1 n! < >
— InP =—-In|{ ——— iln
n ! <n21 n22 n 2. nj;! Z P Al

i,j=1

for n — oo, with njj/n — pj;, where |Ajj| = area of sub-square Aj;.
g-Stirling formula:

) 1 1 — e Bx
- {0} e ymy = AB) = /0 In (ﬁi> &

Shannon Starrr Mallows permutations: AZ School Analyis & Math-Physics



15/18. Large deviations for 4-square

Stirling formula — relative entropy:

1 nii n12> 1 n! < >
— InP =—-In|{ ——— iln
n ! <n21 n22 n 2. nj;! Z P Al

i,j=1

for n — oo, with njj/n — pj;, where |Ajj| = area of sub-square Aj;.
g-Stirling formula:

) 1 1 — e Bx
- {0} e ymy = AB) = /0 In (ﬁi> &

1
" |n{nii}!{q:exp(,5/n) — piiA(Bpij) -
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15/18. Large deviations for 4-square

Stirling formula — relative entropy:

1 nii n12> 1 n! < >
— InP =—-In|{ ——— iln
n ! <n21 n22 n 2. nj;! Z P Al

i,j=1

for n — oo, with njj/n — pj;, where |Ajj| = area of sub-square Aj;.
g-Stirling formula:

) 1 1 — e Bx
- In{nH] g exp(s/m = AB) = /0 n (ﬁi> &

1
" |n{nii}!|q:exp(,5/n) — piiA(Bpij) -

P11 P12 . 1 mi N
e = Ilim —-InW
7 <Pz1 ,022> n=o0 an(5) <n21 n22>

nij/n—pj;
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i,j=1

for n — oo, with njj/n — pj;, where |Ajj| = area of sub-square Aj;.
g-Stirling formula:

) 1 1 — e Bx
- In{nH] g exp(s/m = AB) = /0 n (ﬁi> &
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16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.
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know how fast!

We have to compare L, in the Mallows measure to Ly, in the
Deuschel-Zeitouni model.
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16/18. Conclusion and new problem

To get a CLT for square counts have to do a 9-square problem.

Ultimately, we get fluctuating particle number by coupling:
N, = n =+ O(n®*\/log n) with high probability.

For the Deuschel-Zeitouni model can get easy bounds:
L, —EL, = O(n'/*), with high probability.

Problem. Actually while it is true n=Y/2EL, — I(p), we do not
know how fast!

We have to compare L, in the Mallows measure to Ly, in the
Deuschel-Zeitouni model.

We can either settle for O(n(3/8)*) bounds,

or we can prove O(n1/9+) bounds along subsequences.
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17/18. Cavity step?

All we need to do is show that the area on the right hand picture is
O(n~1/?): each “box” is O(n~1) and there are O(n'/?) “boxes.”
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18/18. Local picture?

Aldous and Diaconis proved that on a horizontal slice, the length
of the LIS behaves locally like a Poisson point process:

. _ L|St NE
Intensity i_i ©

jll-!l]lil]/

Intensity f
LIS to SW
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Tread carefully, the Poisson result is only locally, weakly . ..
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18/18. Local picture?

Aldous and Diaconis proved that on a horizontal slice, the length
of the LIS behaves locally like a Poisson point process:

LIS to NE

Intensity f
LIS to SW

Tread carefully, the Poisson result is only locally, weakly . ..

Intensity i_i

Thanks for your attention!
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