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A Few Words Before We Begin
If they understand the problem then you have done something.

Binormal Flow of a Vortex Filament

Vorticity ω = ∇× v where ω, v : R3+1 → R3

Vortex Filament Plane curve localization, ω 6= 0 on ξ : R→ R3

Self-Induced Motion Local evolution ∂tξ = κ [T× T′/|T′|] = κB

Binormal Flow and nonlinear PDE

Serret-Frenet Y′s = A(κs , τs)Ys where Ys = [T N B]t

A Wave Function ψ = κe iΦ where Φ =
∫ s
τds ′

Hasimoto’s NLS M = (N + iB)e iΦ → i∂tψ + ∂ssψ + 1
2
|ψ|2ψ = 0

The Fundamental Problem

What does the wave function’s vortex look like?
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Hydrodynamic Problems
Vortices: A strange love hate relationship

A Millennium Problem

A fundamental problem in analysis is to decide whether
smooth, physically reasonable solutions exist for the
Navier–Stokes equations.

Role of Vorticity

Vorticity acts as a defining source of fluid flow in the absence
of boundary influence, a kind of internal ‘skeleton’ that
determines the structure of the flow.

Finite time vortex blowup and energy cascade

Fluid turbulence is observed to contain small domains of very
large vorticity.
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Rescued by the Superfluid
...or how learned to stop worrying and love the quanta.

Landau’s two-fluid model (1941)

For temperatures
0 < T < 2.172K = Tλ, 4He acts as
if it were a mixture of two fluids,

v = vn + vs , (1)

where vn is a Navier-Stokes like fluid
and vs is is the superfluid
component.

Lambda point transition

Superfluid Liquid Helium
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Rescued by the Superfluid
...or how learned to stop worrying and love the quanta.

Quantization of vortex core size
R. Feynman (1955) Geometrically these

nodal points must
essentially form lines
through the fluid. They
are quantized vortex
lines.

R. Donnelly (2001) The rotating bucket
contains a uniform array
of N vortices with a
‘vortex-free strip’ on the
outside having quantized
circulation.

Simulated vortices in a
Bose-Einstein
condensate
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R. Feynman (1955) Geometrically these

nodal points must
essentially form lines
through the fluid. They
are quantized vortex
lines.

R. Donnelly (2001) The rotating bucket
contains a uniform array
of N vortices with a
‘vortex-free strip’ on the
outside having quantized
circulation.

Gustavson vortex lattice
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Turbulent Tangles
As good as it gets.

Theory and experiment

W. F. Vinen, J. J. Niemela (2002) Due to the
restrictive nature of the
quantized vortices, quantum
turbulence must involve
irregular arrangements that
are called vortex tangles.

V.S. Bagnato Group (2009) We observe a fast
increase in the number of
vortices followed by a
proliferation of vortex lines
covering many directions.

Numerical tangle,
Tsubota, Araki,
Nemirovskii (2000)
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Bagnato Group
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Problem Statement
Hopes and Dreams

Fundamental Question: Redux

If vorticity is concentrated to lines then is it possible to predict
its self-evolution?

Cottet and Soler (1988)

Beale and Majda (1982)

Fundamental Question: Ideas

Avoid Navier-Stokes evolution by:

Constructing v from ω.

Asking about the induced flow, v, near ω.
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Biot-Savart Integral
Recovering the velocity field from the vorticity field.

A modicum of hope

Helmholtz-Hodge v = vc + vd +∇φ,

Biot-Savart Smooth, decaying , incompressible fields can be
recovered via the Biot-Savart integral,

v(x) =

∫
R3

(x− ω)× dω

|x− ω|3
(2)

Road map and hurdles
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v(x) =

∫
R3

(x− ω)× dω

|x− ω|3
(2)

Road map and hurdles

Idea: Specify ω at t = 0 and using (2) recover v close to ω.
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Biot-Savart Smooth, decaying, incompressible fields can be
recovered via the Biot-Savart integral,

v(x) =

∫
R3

(x− ω)× dω

|x− ω|3
(2)

Road map and hurdles

Idea: Specify ω at t = 0 and using (2) recover v close to ω.
Problem: Integrals can be analytically hard and numerically
expensive. Solution: Constrain ω’s geometry.
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Constraining the Vorticity
Better living through geometry

Vortex filament

Let ω =

{
1, x ∈ ξ
0, x /∈ ξ ,

be such that
ξ = (R sin(θ),R − R cos(θ), 0)
where R = κ−1 ∈ R+ and
θ ∈ DL = (−L, L], L ∈ [0, π].

Vortex filament in R3

Legend

Black (solid)=Vortex, Black (Dashed+Solid)=circle
parameterization, Blue=Local Coordinates (Serret-Frenet),
Gray=Spherical Field Point, Red=Global Coordinates
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Problem Statement
What we hope to achieve

Prescription: ξ = (R sin(θ),R − R cos(θ), 0)

For the previous arc, the Biot-Savart integral becomes

v(x) =

∫
DL

(x− ξ)× dξ

|x− ξ|3
(3)

with elements

vi(x) =

∫
DL

εijk(|x|xj − ξj)dξk
[|x|2 + |ξ|2 − 2|x|(x1ξ1 + x2ξ2 + x3ξ3)]3/2

(4)

Goal

Study (3) for ε = |x|/R = |x|κ� 1 and hopefully find an
asymptotic representation as ε→ 0.
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Local Induction Approximation
Local in space and ‘periodic in time’

Local Induction

A curved vortex line
induces the local flow.

V(x) ≈ κ

4π
ln

(
L

|x|

)
b̂

Derivation Method

♣: Differential
Equations/Geometry
♣: Matched
Asymptotics
♣: Vortex Curve

Chronology

1906 Levi-Civita & Da Rios

1961 Arms & Hama

1965 R. Betchov

1967 G. K. Batchelor

1972 Moore & Saffman

1978 Callegari & Ting

1990 G. L. Lamb

1990 Klein & Majda

1991 Fukumoto & Miyazaki

2011 Strong & Carr
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Generalized Induction/Filament Equation
To Appear in the Journal of Mathematical Physics: arXiv:1102.2258

Theorem 1: GIE, directional component

V1(ε) = εβ1t̂− εβ2n̂ + (εβ2 + εβ3 + β4)b̂

The terms above imply movement in tangential direction ,
circulation about vortex core and binormal flow .

Theorem 2: Generalized Local Induction Equation

vε(x) = κ

[
72x2

2F1(λ, k)

2
− 8x2

2E (L, k)

(1− k2)k

]
b̂

The above formula implies that if ξ is the vortex arc then we
have the standard curvature driven binormal flow ∂tξ ∝ κb̂.
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Serret-Frenet Frame
A moving coordinate system for particle trajectories

Space Curve: ξ : R→ R3

Tangent: T = ξ′(s)

Normal: N =
T′

||T′||
Binormal: B = T×N

(T,N,B) form an
orthonormal set

Scalar Quantities

Curvature: T′ = κN gives
κ = ||T′||
Torsion: B′ = −τN gives
τ = −〈N,B′〉

Serret-Frenet Frame
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Serret-Frenet Equations
Recovering trajectories through kinematic quantities

Recall: T′ = κN, B′ = −τN

|N| = 1 =⇒ 〈N′,N〉 = 0

N′ = 〈N′,T〉T + 〈N′,B〉B
0 = 〈N,T〉′ = 〈N′,T〉+ κ

0 = 〈N,B〉′ = 〈N′,B〉 − τ

Serret-Frenet ODEs T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 =

Key Point

Up to rotations, translations
and calculus, κ, τ can be
used to recover the regular
curve ξ.

Notes

SF are 9× 9 system of
ODEs

SF are not generally
autonomous

The spectral problem is
difficult
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Hasimoto’s Original Result
A clever transformation of binormal flow

Ingredients

ξt = κB

Conservation of Arclength

Serret-Frenet Frame

ψ = κe iΦ, Φ =
∫ s
τds ′

M = (N + iB)e iΦ

Procedure

1 ξst : from binormal flow

2 ξts : from (T,M, M̄)

3 ξst = ξts : from arclength
conservation

4 Equate terms

Results

The wave-function obeys iψt + ψss + 2−1|ψ|2ψ = 0

|ψ| = κ and ∂sArg(ψ) = τ

� Key Point: NLS → κ, τ → SF → T→ ξ
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The SU(2) to SO(3) map
Assuming a Darboux frame

Basis for SU(2)

U1 = −iσz =

[
−i 0
0 i

]
U2 = iσy =

[
0 1
−1 0

]
U3 = iσx =

[
0 i
i 0

]

The isometry SO(3)→ SU(2)

Mapping 1:
(R3, 〈·, ·〉)→ (SU(2), ·)
Mapping 2:
x ∈ R3 →

∑3
i=1 xiUi

Scalar Product:
A · B = −2−1tr(AB)

Image of (e1, e2, e3) under SU(2)

There exists an Ω ∈ SU(2) such that Ei = Ω−1UiΩ where
(E1,E2,E3) is the image of the natural frame (e1, e2, e3).
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Natural Serret-Frenet in the SU(2)
Fruits of the labor

Darboux Equations: Ei = Ω−1UiΩ

[U1, ω] = κ cos(Φ)U2 + κ sin(Φ)U3

[U2, ω] = −κ cos(Φ)U1

[U3, ω] = −κ sin(Φ)U1

Results: Ω′ = ωΩ

ω = −κ cos(Φ)U3 +
κ sin(Φ)U2

ω = i
2

[
0 q
q̄ 0

]
q(s) = κe iΦ

Key Point: A procedure for curve reconstruction

We now have the inversion of the Hasimoto transformation:

VFE → NLS→ κ, τ → q → ω → Ω→ E1 → e1 → ξ
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Conclusions
Thank you for your attention

Key Points

1 A vortex filament with nontrivial curvature will always
display a binormal flow

2 Binormal Flow maps onto NLS

3 Using NLS one can theoretically recover the vortex
geometry

4 Serret-Frenet obstructs analytic results but can be
circumnavigated by using the SU(2) formalism

Future Work

What PDE are possible for the case of vortex tubes?
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