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System of Interacting Quantum Particles in Random
Medium

One-particle random Schrödinger operator Hω on H = L2(Rd)

Anderson model:

Hω = −4d +
∑
j∈Zd

ωjv(· − j), {ωj}j∈Zd iid

n-particle operator:

Hω(n) =
n∑

i=1

1H ⊗ . . .⊗ 1H︸ ︷︷ ︸
i − 1 times

⊗Hω⊗1H ⊗ . . .⊗ 1H︸ ︷︷ ︸
n − i times

+
∑

16i<j6n

U(x i−x j)

on

Hn =


⊗n H = L2(Rnd), for classical particles,∧n H = L2

−(Rnd), for fermions,

Symn H = L2
+(Rnd), for bosons
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Thermodynamic Limit and Problem We Study

Let Λ ⊂ Rd . Thermodynamic limit:

Λ→ Rd , n→ +∞, so that
n

|Λ|
→ ρ > 0

Let Hω(Λ, n) be a restriction of Hω(n) to Λ ⊂ Rd .

General question:
Hω(Λ, n) ∼?

in the thermodynamic limit

Example

Let Eω(Λ, n) be the ground state energy of Hω(Λ, n). Question:

Eω(Λ, n) −−−−−−−−−→
Λ→Rd ,n/|Λ|→ρ

?
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Entropy and Internal Energy

Entropy:

Sω(E ,Λ, n) = log (card{eigenvalues of Hω(Λ, n) less than E})

Energy as a function of entropy: Eω(Λ, n,S)

Eω(Λ, n, 0) is the ground state energy of Hω(Λ, n)

Nikolaj Veniaminov (LAGA, UP13) Thermodynamic Limit in Random Media Tucson, March 16, 2012 5 / 9



Entropy and Internal Energy

Entropy:

Sω(E ,Λ, n) = log (card{eigenvalues of Hω(Λ, n) less than E})

Energy as a function of entropy: Eω(Λ, n, S)

Eω(Λ, n, 0) is the ground state energy of Hω(Λ, n)

Nikolaj Veniaminov (LAGA, UP13) Thermodynamic Limit in Random Media Tucson, March 16, 2012 5 / 9



Entropy and Internal Energy

Entropy:

Sω(E ,Λ, n) = log (card{eigenvalues of Hω(Λ, n) less than E})

Energy as a function of entropy: Eω(Λ, n, S)

Eω(Λ, n, 0) is the ground state energy of Hω(Λ, n)

Nikolaj Veniaminov (LAGA, UP13) Thermodynamic Limit in Random Media Tucson, March 16, 2012 5 / 9



Existence of Thermodynamic Limit for Energy

Theorem (main)

Suppose:

Hω is uniformly lower bounded: Hω > −C , ∀ω,

Hω satisfies a decorrelation at a distance estimate,

Interactions are stable: Hω(Λ, n) > −Cn, ∀Λ, ∀ω,

Interactions are tempered: ∃A, λ > d, R0 such that

|U(x)| 6 A|x |−λ for |x | > R0.

Then the energy admits thermodynamic limit:

Eω(Λ, n, S)

n

L2
ω−→ ε(ρ, σ), Λ→ Rd ,

n

|Λ|
→ ρ,

S

n
→ σ > 0.

The energy density ε(ρ, σ) is a deterministic function.

Skip corollaries
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Some Corollaries

ε(ρ, σ) is increasing in ρ and σ

ε(ρ, σ) is convex in ρ−1 and σ

Entropy as a function of energy admits thermodynamic limit:

Sω(E ,Λ, n)

n
→ σ(ρ, ε), Λ→ Rd ,

n

|Λ|
→ ρ,

E

n
→ ε ∈ Ran ε(ρ, ·),

where σ(ρ, ·) is an inverse of ε(ρ, ·).
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What to Study Next?

One can study Ψω(Λ, n), the ground state wavefunction of Hω(Λ, n),
in the thermodynamic limit.

Only fermionic case:

n bosons give ∼ n2 interactions
n fermions give effectively ∼ n interactions

Reference model for d = 1:
1 domain Λ becomes [0, L]
2 consider Poisson point process on R
3 points inside [0, L] define positions of walls
4 Hω = −4D with Dirichlet boundary conditions at these points

Description of Ψω(Λ, n) is obtained for small ρ. In particular:
1 Loose functional subspace is found
2 Slater determinant type structure
3 Autocorrelation function and decorrelation length are estimated
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The End

Thank you for your attention!
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