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Abstract: Small value probabilities or small deviations study the

decay probability that positive random variables behave near zero. In

particular, small ball probabilities provide the asymptotic behavior of

the probability measure inside a ball as the radius of the ball tends to

zero. In this talk, we will provide an overview with connections and

recent developments in analysis and mathematical physics, including

metric entropy of compact operators, weaker Gaussian correlation

inequality, small ball inequalities, symmetrization inequalities in high

dimension, and Laplace asymptotics of partition functions.
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Small Value Probability

Small value (deviation) probability studies the asymptotic rate of
approaching zero for rare events that positive random variables take
smaller values. To be more precise, let Yn be a sequence of non-
negative random variables and suppose that some or all of the prob-
abilities

P (Yn ≤ εn) , P (Yn ≤ C) , P (Yn ≤ (1− δ)EYn)

tend to zero as n → ∞, for εn → 0, some constant C > 0 and
0 < δ ≤ 1. Of course, they are all special cases of P (Yn ≤ hn) → 0
for some function hn ≥ 0, but examples and applications given later
show the benefits of the separated formulations.

What is often an important and interesting problem is the determi-
nation of just how “rare” the event {Yn ≤ hn} is, that is, the study
of the small value (deviation) probabilities of Yn associated with the
sequence hn.

If εn = ε and Yn = ‖X‖, the norm of a random element X on a sepa-
rable Banach space, then we are in the setting of small ball/deviation
probabilities.
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Deviations: Large vs Small

• Both are estimates of rare events and depend on one’s point of

view in certain problems.

• Large deviations deal with a class of sets rather than special sets.

And results for special sets may not hold in general.

• Similar techniques can be used, such as exponential Chebychev’s

inequality, change of measure argument, isoperimetric inequalities,

concentration of measure, etc.

• Second order behavior of certain large deviation estimates depends

on small deviation type estimates.

• General theory for small deviations has been developed for Gaus-

sian processes and measures.
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• Some technical difficulties for small deviations: Let X and Y be
two positive r.v’s (not necessarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) ,P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y > (1− δ)t)
but

?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) ,P (Y ≤ ε))

• Moment estimates an ≤ EXn ≤ bn can be used for

E eλX =
∑
n=0

λn

n!
EXn

but E exp{−λX} is harder to estimate.

• Exponential Tauberian theorem: Let V be a positive random vari-
able. Then for α > 0

logP (V ≤ ε) ∼ −CV ε−α as ε→ 0+

if and only if

logE exp(−λV ) ∼ −(1 + α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)

as λ→∞.
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Ex: Let Xi, i ≥ 1, be i.i.d. random variables with EXi = 0 and

EX2
i = 1, E exp(t0|X1|) <∞ for t0 > 0, and Sn =

∑n
i=1Xi. Then as

n→∞ and xn →∞ with xn = o(
√
n)

logP
(

1
√
n

max
1≤i≤n

|Si| ≥ xn
)
∼ −

1

2
x2
n

and as n→∞ and εn → 0,
√
nεn →∞

logP
(

1
√
n

max
1≤i≤n

|Si| ≤ εn
)
∼ −

π2

8
ε−2
n .

•Open: Find

logP
(

max
1≤i≤n

|Si| ≤ C
)
∼ −??n.

Note that ?? 6= π2/8.
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Ex: Let Lµ(n) be the length of the longest increasing subsequence

(or records) in i.i.d sample {(Xi, Yi)}ni=1 with law µ. Then

lim
n→∞

Lµ(n)
√
n

= 2Jµ.

The upper tail is known and for c > 0

lim
n→∞

1
√
n

logP
(
Lµ(n) > (2Jµ + c)

√
n
)

= −Uµ(c).

The lower tail is unknown in general, but for 0 < c < 2Jµ

logP
(
Lµ(n) < (2Jµ − c)

√
n
)
≈ −n.

See Deuschel and Zeitouni (1999), Aldous and Diaconis (1999),

Okounkov (2000), and Li (2004+) for Gaussians.

•Open: Find

lim
n→∞

1

n
logP

(
Lµ(n) < (2Jµ − c)

√
n
)
.

I think there are some recent work on this direction.
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Ex: For one-dim Brownian motion B(t) under the sup-norm, we
have by scaling

logP
(

sup
0≤t≤1

|B(t)| ≤ ε
)

= logP
(

sup
0≤t≤T

|B(t)| ≤ 1

)
= logP (τ2 ≥ T )

∼ −
π2

8
· T ∼ −

π2

8

1

ε2

as ε→ 0 and T = ε−2 →∞. Here τ2 = inf {s : |B(s)| ≥ 1} is the first
two-sided exit (or passage) time.

Ex: (One sided exit time)

P
(

sup
0≤t≤1

B(t) ≤ ε
)

= P
(

sup
0≤t≤T

B(t) ≤ 1

)
= P (τ1 > T )

= P (|B(T )| ≤ 1) ∼ (2/π)1/2T−1/2 = (2/π)1/2ε

where τ1 = inf {s : B(s) = 1} is the one-sided exit time.

• For Gaussian process X(t) with X(0) = 0, there are very few cases
the behavior

P( sup
0≤t≤1

X(t) ≤ ε), ε→ 0+

is known.
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Some Formulations for General Processes

Let X = (Xt)t∈T be a real valued stochastic process (not necessary

Gaussian) indexed by T .

The large deviation under the sup-norm: P
(
supt∈T (Xt −Xt0) ≥ λ

)
as λ→∞.

The small ball (deviation) probability: logP (‖X‖ ≤ ε) as ε → 0

for any norm ‖·‖.

The small ball probability under the sup-norm: P (supt∈T |Xt| ≤ ε)
as ε→ 0.

Two-sided exit problem: P (supt∈T |Xt| ≤ 1) as |T | → ∞.

The lower tail probability: P
(
supt∈T (Xt −Xt0) ≤ ε

)
as ε→ 0 with

t0 ∈ T fixed.

One-sided exit problem: P
(
supt∈T (Xt −Xt0) ≤ 1

)
as |T | → ∞.

•For processes with scaling property, problems equivalent for ε→ 0

and for |T | → ∞.
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The Lower Tail Probability

Let X = (Xt)t∈T be a real valued Gaussian process indexed by T .
The lower tail probability studies

P
(

sup
t∈T

(Xt −Xt0) ≤ ε
)

as ε→ 0

with t0 ∈ T fixed. Some general upper and lower bounds are given
in Li and Shao (2004). In particular, for d-dimensional Brownian
sheet W (t), t ∈ Rd,

logP

 sup
t∈[0,1]d

W (t) ≤ ε

 ≈ − logd
1

ε
.

Many open problems remain and new techniques are needed.
• Known cases: Brownian motion(BM), Brownian bridge, OU pro-
cess, integrated BM, fractional BM, and a few more.
• The rate for the integrated fractional Brownian motion is related
to the singularity of Burger’s equation, See Sinai (1992), Molchan
(1999, 2001, 2004, 2006), Li and Shao (2005).
• The rate for the m-th integrated Brownian motion is related to
the positivity exponent of random polynomials, see Li and Shao
(2011+).
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Exit Time, Principal Eigenvalue, Heat Equation

Let D be a smooth open (connected) domain in Rd and τD be the

first exit time of a diffusion with generator A. For bounded domain

D and strong elliptic operator A, by Feynman-Kac formula,

lim
t→∞

t−1 logP (τD > t) = −λ1(D)

where λ1(D) > 0 is the principal eigenvalue of −A in D with Dirichlet

boundary condition.

Ex: Brownian motion in Rd with A = ∆/2. Let v(x, t) = Px{τD ≥ t}

Then v solves

{
∂v
∂t = 1

2∆v inD
v(x,0) = 1 x ∈ D.

So this type of results can be

viewed as long time behavior of log v(x, t), which satisfies a nonlinear

evolution equation.

• Unbounded domain D and/or degenerated differential operator A.

Li (2003), van den Berg (2004), Kuelbs and Li (2004), Bañuelos

and DeBlassie (2006).
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Hamiltonian and Partition Function

One of the basic quantity in various physical models is the associ-

ated Hamiltonian (energy function) H which is a nonnegative func-

tion. The asymptotic behavior of the partition function (normaliz-

ing constant) E e−λH for λ > 0 is of great interests and it is directly

connected with the small value behavior P(H ≤ ε) for ε > 0 under

appropriate scaling.

In the one-dim Edwards model a Brownian path of length t receives a

penalty e−βHt where Ht is the self-intersection local time of the path

and β ∈ (0,∞) is a parameter called the strength of self-repellence.

In fact

Ht =
∫ t

0

∫ t
0
δ(Wu −Wv)dudv =

∫ ∞
−∞

L2(t, x)dx
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It is known, see van der Hofstad, den Hollander and König (2002),

that

lim
t→∞

1

t
logE e−βHt = −a∗β2/3

where a∗ ≈ 2.19 is given in terms of the principal eigenvalues of a

one-parameter family of Sturm-Liouville operators. Bounds on a∗

appeared in van der Hofstad (1998).

• Chen and Li (2011+): For the one-dim Edwards model, it is not

hard to show

lim
ε→0

ε2/(p+1) logP{
∫ ∞
−∞

Lp(1, x)dx ≤ ε} = −cp

for some unknown constant cp > 0. Bounds on cp can be given by

using Gaussian techniques.

•Chen (2010), Chen and Rosinski (2011): Renormalization and

asymptotics for physical models.

•Chen, Li, Rosinski and Shao (2011): Large deviations for local

times and intersection local times
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SVP for the Martingale Limit of a Galton-Watson Tree

Consider the Galton-Watson branching process (Zn)n≥0 with off-

spring distribution (pk)k≥0 starting with Z0 = 1. In any subsequent

generation individuals independently produce a random number of

offspring according to P(N = k) = pk. Suppose µ = EN > 1 and

EN logN < ∞. Then by Kesten-Stigum theorem, the martingale

limit (a.s and in L1)

W = lim
n→∞

Zn

µn

exists and is nontrivial almost surely with EW = 1. WOLG, assume

p0 = 0 and pk < 1 for all k ≥ 1. Then in the case p1 > 0, there exist

constants 0 < c < C <∞ such that for all 0 < ε < 1

cετ ≤ P(W ≤ ε) ≤ Cετ , τ = − log p1/ logµ

and in the case p1 = 0, there exist constants 0 < c < C < ∞ such

that for all 0 < ε < 1

cε−β/(1−β) ≤ − logP(W ≤ ε) ≤ Cε−β/(1−β).

with ν = min{k ≥ 2 : pk 6= 0} and β = log ν/ logµ < 1.
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•These results are due to Dubuc (1971a,b) in the p1 > 0 case, and

up to a Tauberian theorem also in the p1 = 0 case, see Bingham

(1988). A probabilistic argument is given in Mörters and Ortgiese

(2008).

•Asymptotics for the survival probability in killed branching random

walk, Gantert, Hu and Shi (2010).

•Similar results for supercritical branching processes with immigra-

tion, Chu, Li and Ren (2011).
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Smoothness of the Density via Malliavin Matrix

Consider F = (F1, · · · , Fm) : Ω → Rm with F i ∈ D1,2. Then Malli-
avin Matrix of F is

γF = (γijF ), γ
ij
F =

〈
DF i, DF j

〉
Thm:(Bouleau-Hirsch) If det(γF ) > 0, a.s, then the law of F is
absolute continuous.

Thm: (Malliavin) If (1) F i ∈ D∞ and (2) E |det γF |−p < ∞ for any
p > 0, then F has a C∞ density.

•The condition (ii) is called non-degeneracy for F .

•All these have been extended into theory of SDE and SPDE. It is
curial to check the non-degeneracy condition which is small value
probability.

•Mueller and Nualart (2008): Regularity of the density for the
stochastic heat equation.
•Fei, Hu and Nualart (2011+): convergence of densities.
•Nualart (2010, book): Malliavin Calculus and its Applications.
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Covering Number, Metric Entropy and ε-nets

Let A be a compact subset in a metric space (E, ρ), and let ε >

0 be given. The metric entropy of A is denoted by H(A, ρ, ε) =
logN(A, ρ, ε) where

N(A, ε) = N(A, ρ, ε) = N(A, εBρ)

= min {n ≥ 1 : ∃x1, · · · , xn ∈ A
such that A ⊂ ∪nj=1(xj + εBρ)

}
,

and Bρ(a; r) = {x : ρ(x, a) < r} is the open ball of radius r centered
at a.

We also say a set F ⊂ Rd is an ε-net for A with respect to B if
A ⊂ ∪x∈F (x + εB). The smallest cardinality of an ε-net is denoted
by N(A,B, ε) = N(A, εB).

•The metric entropy is a natural representation of how many bits you
need to send in order to identify an element of a set up to precision
ε. It is a tool heavily used in approximation theory, probability and
statistics, learning theory, compressive sensing and random matrix
theory
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Ex:

A2 = {f ∈ C[0,1] : f(0) = 0, |f(x)− f(y)| ≤ |x− y|α, ∀x, y ∈ [0,1]}

for 0 < α ≤ 1 and ‖f‖ = sup0≤x≤1 |f(x)|.

Then H(A2, ε) ≈ (1/ε)1/α as ε→ 0.

Ex:

A3 = {f ∈ C[0,1] : f(0) = 0, |f(x)− f(y)| ≤ |x− y|α,
∀x, y ∈ [0,1]and Var(f, [0,1]) ≤ 1 }

where 0 < α < 1.

Then H(A3, ε) ≈ (1/ε) log(1/ε) as ε→ 0 (Clements, 1963).
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Ex:

K =

{
g ∈ C[0,1] : g(0) = 0, g absol. cont.,

∫ 1

0
|g′(s)|2ds ≤ 1

}
.

Note that K ⊂ A3 when α = 1/2 since

|g(t)− g(s)| =
∣∣∣∣∫ t
s
g′(u)du

∣∣∣∣
≤ (t− s)1/2

(∫ t
s

∣∣∣g′(u)
∣∣∣2 du)1/2

≤ (t− s)1/2

and Var(g) ≤
∫ 1
0
∣∣g′(t)∣∣ dt ≤ 1

• Kolmogorov and Tihomirov (1961): H(ε,K, ‖·‖2) ≈ 1/ε.

• Birman and Solomjak (1967): H(ε,K, ‖·‖∞) ≈ 1/ε.

• Kuelbs and Li (1993): As ε→ 0

(2−
√

3)/4 ≤ ε ·H(K, ‖·‖2 , ε) ≤ 1

(2−
√

3)π/4 ≤ ε ·H(K, ‖·‖∞ , ε) ≤ π.

Note that K is the unit ball of the reproducing kernel Hilbert space

generated by Brownian motion.
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Links between Small Ball and Metric Entropy

As it was established in Kuelbs and Li (1993) and completed Li and

Linde (1999), the behavior of

logP (‖X‖ ≤ ε)

for Gaussian random element X is determined up to a constant by

the metric entropy of the unit ball of the reproducing kernel Hilbert

space associated with X, and vice versa.

• The Links can be formulated for entropy numbers of compact

operator from Hilbert space to Banach space.

• This is a fundamental connection (both asymptotic and non-

asymptotic) that has been used to solve important questions on

both directions.
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Gaussian Process, Operator and RKHS

The following statements are equivalent:
(i). X is a centered Gaussian random vector with law µ = L(X) in
a separable Banach space E.
(ii). There exist a separable Hilbert space H and an operator u :
H → E such that

∑∞
j=1 ξju(fj) converges a.s. in E for one (each)

ONB (fj)
∞
j=1 in H and

X
d
=
∞∑
j=1

ξju(fj)

where ξj are i.i.d. N(0,1).
(iii). There are x1, x2, . . . in E such that

∑∞
j=1 ξjxj converges a.s. in

E and

X
d
=
∞∑
j=1

ξjxj .

• The series
∑∞
j=1 ξju(fj) converges a.s. implies that u is compact

and the RKHS Hµ = u(H) with compact unit ball Kµ in E.

• The RKHS Hµ can also be described as the completion of the
range of the mapping S : E∗ → E defined by the Bochner integral
Sf =

∫
E xf(x)dµ(x), f ∈ E∗.
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Ex: For the standard Brownian motion W (t),0 ≤ t ≤ 1 on C[0,1],

the associated compact operate is the integration operator

uf(t) =
∫ t

0
f(s)ds.

The unit ball of the RKHS is

K =

{
g ∈ C[0,1] : g(0) = 0, g absol. cont.,

∫ 1

0
|g′(s)|2ds ≤ 1

}
.

• Kolmogorov and Tihomirov (1961): H(ε,K, ‖·‖2) ≈ 1/ε.

• Birman and Solomjak (1967): H(ε,K, ‖·‖∞) ≈ 1/ε.

• Kuelbs and Li (1993): As ε→ 0

(2−
√

3)/4 ≤ ε ·H(ε,K, ‖·‖2) ≤ 1

(2−
√

3)π/4 ≤ ε ·H(ε,K, ‖·‖∞) ≤ π.
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Correlation inequalities

The Gaussian correlation conjecture: For any two symmetric

convex sets A and B in a separable Banach space E and for any

centered Gaussian measure µ on E,

µ(A ∩B) ≥ µ(A)µ(B).

An equivalent formulation: If (X1, . . . , Xn) is a centered, Gaussian

random vector, then

P
(

max
1≤i≤n

|Xi| ≤ 1

)
≥ P

(
max

1≤i≤k
|Xi| ≤ 1

)
P
(

max
k+1≤i≤n

|Xi| ≤ 1

)
for each 1 ≤ k < n.

• Sidak inequality: The above holes for k = 1 or any slab B.
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The weaker Correlation inequality: For any 0 < λ < 1, any

symmetric, convex sets A and B,

µ(A ∩B)µ(λ2A+ (1− λ2)B) ≥ µ(λA)µ((1− λ2)1/2B).

In particular,

µ(A ∩B) ≥ µ(λA)µ((1− λ2)1/2B)

and

P(X ∈ A, Y ∈ B) ≥ P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
for any centered joint Gaussian vectors X and Y .

The varying parameter λ plays a fundamental role in applications,

see Li (1999). It allows us to justify

µ(A ∩B) ≈ µ(A) if µ(A)� µ(B).

Note also that

µ(∩mi=1Ai) ≥
m∏
i=1

µ(λiAi)

for any λi ≥ 0 with
∑m
i=1 λ

2
i = 1.

23



For the weaker correlation inequality established in Li (1999), here

is a very simple proof given in Li and Shao (2001). Let a = (1 −
λ2)1/2/λ, and (X∗, Y ∗) be an independent copy of (X,Y ). Then

X−aX∗ and Y +Y ∗/a are independent. Thus, by Anderson inequality

P(X ∈ A, Y ∈ B) ≥ P(X − aX∗ ∈ A, Y + Y ∗/a ∈ B)

= P(X − aX∗ ∈ A)P(Y + Y ∗/a ∈ B)

= P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
.
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Consider the sums of two centered Gaussian random vectors X and

Y in a separable Banach space E with norm ‖·‖.
Thm:If X and Y are independent and

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX ,

lim
ε→0

εγ logP (‖Y ‖ ≤ ε) = −CY

with 0 < γ <∞ and 0 ≤ CX , CY ≤ ∞. Then

lim sup
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≤ −max(CX , CY )

lim inf
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≥ −
(
C

1/(1+γ)
X + C

1/(1+γ)
Y

)1+γ
.

Thm: If two joint Gaussian random vectors X and Y , not necessarily

independent, satisfy

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX ,

lim
ε→0

εγ logP (‖Y ‖ ≤ ε) = 0

with 0 < γ <∞, 0 < CX <∞. Then

lim
ε→0

εγ logP (‖X + Y ‖ ≤ ε) = −CX .
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A Symmetrization Inequality for Two Norms

Let K ⊂ Rd and L ⊂ Rd be two origin symmetric convex bodies, ‖·‖K
and ‖ · ‖L be the corresponding gauges on Rd, that is the norms for

which K and L are the unit balls.

Let C+ = C+(‖ ·‖K, ‖ ·‖L, d, a, b, ) be the optimal constant such that,

for all Rd-valued i.i.d. random variables X and Y , and a, b > 0,

P(‖X + Y ‖L ≤ b) ≤ C+ · P(‖X − Y ‖K ≤ a).

•For d = 1, it is not hard to show C+ ≤ d2b/ae+ 1.

•Schultze and Weizsäcker (2007): For d = 1 and a = b, C+ = 2

which answers an open problem for about 10 years.

•Dong, J. Li and Li (2011+):

C+ ≤ N(BL(b), BK(a/2)),

and the bound are optimal for ‖ · ‖K = ‖ · ‖L = ‖ · ‖∞ with C+ =

d2b/aed.
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Probability of all real zeros for random polynomial
in the exponential ensemble

Thm (Li (2011)). The probability that a random polynomial of
degree n with i.i.d exponentially distributed coefficients has all real
zeros is

P(All zeros are real) = E
∏

1≤j<k≤n
|Uj − Uk| =

n−1∏
k=1

(2k + 1

k

)−1

where Ui are i.i.d uniform on the interval [0,1].

•In particular, we have

pe1 = 1, pe2 =
1

3
, pe3 =

1

30
, pe4 =

1

1050
pe5 =

1

132300
.

•Asymptotically, logP(Nn = n) ∼ − log 2 · n2 as n→∞.

•The second identity is a form of Selberg integral.

•Our evaluation of the probability starts with a formula of Za-
porozhets (2004) which is based on an integral geometry represen-
tation developed by Edelman and Kostlan (1995) and tools from
differential geometry.
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NSF/CBMS Conference
Small Deviation Probabilities: Theory and Applications

Ten lectures by Wenbo V. Li June 4-8, 2012

Other Invited Talks (more to be added):

Xia Chen (University of Tennessee): Laplace asymptotics and Brow-
nian functionals
Frank Gao (University of Idaho): Interplays with Convex geometry
and/or bracket entropy
Nguyen Hoi (University of Pennsylvania):Singularity and/or Littlewood-
Offer type estimates with applications to random matrices
Yaozhong Hu (University of Kansas): Applications to smoothness
of density of Gaussian functionals via Malliavin calculus
Thomas Kuehn (Universitat Leipzig): Interplays with approximation
and learning theory
James Kuelbs (University of Wisconsin-Madison): Branching related
small value probabilities
Michael Lacey (Georgia Institute of Technology): Small ball inequal-
ities and harmonic analysis
Yimin Xiao (Michigan State University): Interplays with fractal ge-
ometry for Gaussian fields
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Typical Small Value Behavior

To make precise the meaning of typical behaviors that positive ran-
dom variables take smaller values, consider a family of non-negative
random variables {Yt, t ∈ T} with index set T . We are interested in
evaluation E inft∈T Yt or its asymptotic behavior as the size of the
index set T goes to infinity.

Ex: The first passage percolation indexed by paths.

Ex: Random assignment type problems indexed by permutations.

Conj: (Li and Shao) For any centered Gaussian r.v’s (Xi)
n
i=1,

E min
1≤i≤n

|Xi| ≥ E min
1≤i≤n

|X̂i|

where X̂i are ind. centered Gaussian with E X̂2
i = EX2

i .

Yes for n = 2,3.

Gordon, Litvak, Schutt and Werner (2006):

2E min
1≤i≤n

|Xi| ≥ E min
1≤i≤n

|X̂i|
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Expected Lengths of Minimum Spanning Tree (MST)

For a simple, finite, and connected graph G with vertex set V (G)

and edge set E(G), we assign a non-negative i.i.d random length ξe

with distribution F to each edge e ∈ E(G). The total length of the

MST is denoted by

LFMST (G) = min
T

∑
e∈T

ξe =
∑

e∈MST (G)

ξe.

In particular, we use the notation E[LuMST (G)] for U(0,1) and E[LeMST (G)]

for exp(1).

•Frieze (1985): For complete graph Kn on n vertices,

lim
n→∞E[LeMST (Kn)] = lim

n→∞E[LuMST (Kn)] = ζ(3) =
∞∑
k=1

k−3 = 1.202...

See related results in Steele (1987), Frieze and McDiarmid (1989),

Janson (1995). Pennose (1998), Beveridge, Frieze McDiarmid (1998),

Frieze, Ruszink and Thoma (2000), Fill and Steele (2004), Gamarnik

(2005).
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Exact Formula

•Steele (2002):

E[LuMST (G)] =
∫ 1

0

(1− t)
t

Tx(G; 1/t,1/(1− t))

T (G; 1/t,1/(1− t))
dt,

where T (G : x, y) is the Tutte polynomial of G and Tx(G;x, y) is the

partial derivative of T (G;x, y) with respect to x.

•Li and X. Zhang (2009): For complete graph Kn,

0 < E[LeMST (Kn)]− E[LuMST (Kn)] =
ζ(3)

n
+O

(
n−2 log2 n

)
.
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