Weak Localization in the alloy-type 3D Anderson Model

Zhenwei Cao
Math Department
Virginia Tech

Arizona School of Analysis and Mathematical Physics March 2012

Outline

- Background
- Statement of the result
- Proof of weak localization
- Wegner's estimate
- Proof of lemma

Setup

Consider the random Schrödinger operator of the following type

$$
\left(H_{\omega}^{\lambda} \psi\right)(x):=-\frac{1}{2}(\Delta \psi)(x)+\lambda V_{\omega}(x) \psi(x) .
$$

Here Δ denotes the discrete Laplace operator,

$$
(\Delta \psi)(x)=\sum_{e \in \mathbb{Z}^{3},|e|=1} \psi(x+e)-6 \psi(x)
$$

and V_{ω} stands for a random multiplication operator of the form

$$
V_{\omega}(x)=\sum_{i \in \mathbb{Z}^{3}} \omega_{i} u(x-i)
$$

Note the spectrum of the unperturbed operator H_{w}^{0} is absolutely continuous and is the interval $[0,6]$.

Background

- For 3D models, the first weak localization result for the Anderson model was proved by Frölich and Spencer(1983) through multiscale analysis.
- There are many results quantifying the weak localization region when the single cite potential is a delta function. For example, Aizenman(1994) shows there is localization in the region $\left[-a \lambda,-a \lambda+\lambda^{5 / 4}\right]$. Klopp(2002) derives a upper bound on the of order $-\lambda^{7 / 6}$. Elgart(2009) pushes the upper bound to $-\lambda^{2}$ by using a Feynman diagrammatic techinque.
- This work extends the results in Elgart(2009) to a general single cite potential. Related work on diagramatic techniques includes Erdos and Yau(2000) and Chen(2005). Notice non-monotonicity of the single cite potential poses a problem in deriving Wegner's estimate. Also there are issues involving employing the diagramatic technique.

Assumptions

- u decays exponentially fast:

$$
|u(x)| \leq C e^{-A|x|}
$$

- u is compactly supported.
- The random variables $\left\{\omega_{i}\right\}$ are independent, identically distributed, even, and compactly supported on an interval J, with bounded probability density ρ. Moreover, function ρ is Lipschitz continuous:

$$
|\rho(x)-\rho(y)| \leq K|x-y|
$$

- The moments of ω_{i} satisfy

$$
\mathbb{E}\left[\omega_{i}^{2 m}\right]=\tilde{c}_{2 m} \leq(2 m)!c_{v}, \quad \tilde{c}_{2}=1, \quad \forall i \in \mathbb{Z}^{3}, m \in \mathbb{N}
$$

Results

Let \hat{u} denotes the Fourier transform of u.

$$
\hat{u}(p)=\sum_{n \in \mathbb{Z}^{3}} e^{-i 2 \pi p \cdot n} u(n), \quad p \in \mathbb{T}^{3}=[-1 / 2,1 / 2]^{3}
$$

Spectral localization

$$
\begin{equation*}
E_{0}=-2 \lambda^{2}\|\hat{u}\|_{\infty}^{2}-2 \lambda^{4}\|\hat{u}\|_{\infty}^{4} \tag{1}
\end{equation*}
$$

For any $\alpha>0$ there exists $\lambda_{0}(\alpha)$ such that for all $\lambda<\lambda_{0}(\alpha)$ the spectrum of H_{ω} within the set $E<E_{0}-\lambda^{4-\alpha}$ is almost surely of the pure-point type, and the corresponding eigenfunctions are exponentially localized.

For any integer N and energies E that satisfy the condition of above theorem we have the decomposition

$$
R(x, y)=\sum_{n=0}^{N-1} A_{n}(x, y)+\sum_{z \in Z^{3}} \tilde{A}_{N}(x, z) R(z, y)
$$

with $A_{0}(x, y)=R_{r}(x, y)$, and where the (real valued) kernels A_{n}, \tilde{A}_{N} satisfy bounds

$$
\begin{aligned}
& \quad \mathbb{E}\left|A_{n}(x, y)\right|^{2} \leq(4 n)!E^{*}\left(C\left(E^{*}\right) \frac{\lambda^{2}}{\sqrt{E^{*}}}\right)^{n} e^{-\delta|x-y|}, \quad n \geq 1 \\
& \mathbb{E}\left|\tilde{A}_{N}(x, y)\right| \leq \sqrt{(4 N)!}\left(C\left(E^{*}\right) \frac{\lambda^{2}}{\sqrt{E^{*}}}\right)^{N / 2} e^{-\delta|x-y| / 2}, \quad N>1 ; \\
& \text { where } \delta:=\sqrt{E_{0}-E-E^{*}} /(\sqrt{6} \pi) .
\end{aligned}
$$

The zero order contribution A_{0} satisfies

$$
\begin{equation*}
\left|A_{0}(x, y)\right| \leq 2 e^{-\frac{\delta}{3 \sqrt{3}}|x-y|} \tag{2}
\end{equation*}
$$

for all $x, y \in \mathbb{Z}^{3}$.

Using above lemma, choosing $(4 N)^{4}=\frac{\sqrt{E^{*}}}{C\left(E^{*}\right) \lambda^{2}}$, we get a bound

$$
\mathbb{E}|R(E+i \epsilon ; x, k)| \leq C\left(e^{-\delta L / 2}+\frac{e^{-N}}{\epsilon \delta}\right)
$$

Hence we obtain

$$
\begin{align*}
& \mathbb{E}\left|R_{\Lambda_{L, x}}(E+i \epsilon ; x, w)\right| \\
& \leq \mathbb{E}|R(E+i \epsilon ; x, w)|+\mathbb{E}\left|R_{\Lambda_{L, x}}(E+i \epsilon ; x, w)-R(E+i \epsilon ; x, w)\right| \\
& \leq C \frac{L^{2}}{\epsilon} \max _{\operatorname{dist}(k, \partial \Lambda) \leq 1} \mathbb{E}|R(E+i \epsilon ; x, k)| \\
& \leq C \frac{L^{2}}{\epsilon}\left[e^{-\delta L / 2}+\frac{e^{-N}}{\epsilon \delta}\right] \tag{3}
\end{align*}
$$

Let $I=\left[E-\epsilon^{1 / 4}, E+\epsilon^{1 / 4}\right]$, and consider two events, the first one is $G_{\omega}(I):=\left\{\omega \in \Omega: \sigma\left(H_{\Lambda_{L, x}}\right) \cap I=\emptyset\right\}$, the other one is $\sigma\left(H_{\Lambda_{L, x}}\right) \cap I \neq \emptyset$ For the first part, since

$$
\left|R_{\Lambda_{L, x}}(E+i \epsilon ; x, w)-R_{\Lambda_{L, x}}(E ; x, w)\right| \leq \epsilon^{1 / 2}
$$

Pairing this bound with (3) and using Chebyshev's inequality

$$
\operatorname{Prob}\left\{\omega \in G_{\omega}(I):\left|R_{\Lambda_{L, x}}(E ; x, w)\right| \geq C \frac{L^{2}}{\epsilon^{5 / 4}}\left[e^{-\delta L / 2}+\frac{e^{-N}}{\epsilon \delta}\right]+\epsilon^{1 / 4}\right\}
$$

The Wegner estimate implies that for the second event $\operatorname{Prob}\left\{\sigma\left(H_{\Lambda_{L, x}}\right) \cap I \neq \emptyset\right\} \leq C|I|\left|\Lambda_{L, x}\right|^{2} D^{-3 / 2}=C \epsilon^{1 / 4} D^{-3 / 2} L^{4}$.

Combining (4) and (5) we arrive at

$$
\begin{aligned}
& \operatorname{Prob}\left\{\left|R_{\Lambda_{L, x}}(E ; x, w)\right| \geq C \frac{L^{2}}{\epsilon^{4 / 3}}\left[e^{-\delta L / 2}+\frac{e^{-N}}{\epsilon \delta}\right]\right.\left.+\epsilon^{1 / 4}\right\} \\
& \leq C \epsilon^{1 / 4} D^{-3 / 2} L^{4}
\end{aligned}
$$

Choose $E^{*}=\lambda^{4-\alpha} / 2, L=\lambda^{-2}$ and $\epsilon=e^{-4 \lambda^{-B^{\prime} \alpha / 2}}$ we get the following initial volume estimate

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|R_{\Lambda_{\lambda-2, x}}(E ; x, w)\right| \geq e^{-\lambda^{-B^{\prime} \alpha / 2}}\right\} \leq e^{-\lambda^{-B^{\prime} \alpha / 2}} \tag{6}
\end{equation*}
$$

Wegner's estimate

Let I be an open interval of energies such that

$$
D:=\operatorname{dist}\left(I, \sigma\left(H_{\omega}^{0}\right)\right)>0
$$

Then we have

$$
\begin{equation*}
\mathbb{E} \operatorname{tr} P_{I}\left(H_{\omega}^{\Lambda, \lambda}\right) \leq C|I||\Lambda|^{2} D^{-3 / 2} \tag{7}
\end{equation*}
$$

where $H_{\omega}^{\wedge, \lambda}$ denotes a natural restriction of H_{ω}^{λ} to $\Lambda \subset \mathbb{Z}^{3}$.
This Wegner's estimate may not be the optimal one, as in the δ potential case, where it is Λ instead of Λ^{2}. But suffice for the proof of localization.

Proof of Wegner's estimate

Notice
$\mathbb{E} F_{\omega}=\int F_{\omega} \prod_{i \in \Lambda} \rho\left(\omega_{i}\right) d \omega_{i}=\frac{1}{2 \delta} \int_{1-\delta}^{1+\delta} v^{|\Lambda|} d v \int F_{v \hat{\omega}} \prod_{i \in \Lambda} \rho\left(v \hat{\omega}_{i}\right) d \hat{\omega}_{i}$.

$$
\begin{aligned}
& \mathbb{E} \operatorname{tr} \operatorname{Im}\left(H_{\omega}^{\wedge, \lambda}-E-i \eta\right)^{-1} \\
\leq & \frac{e}{2 \delta} \int_{1-\delta}^{1+\delta} d v \int \frac{\eta}{v^{2}} \operatorname{tr}\left(\left(v^{-1} A+V_{\hat{\omega}}\right)^{2}+(\eta / 2)^{2}\right)^{-1} \prod_{i \in \Lambda} \rho\left(v \hat{\omega}_{i}\right) d \hat{\omega}_{i}
\end{aligned}
$$

where $A=\Delta_{\Lambda}-E$ is positive. Change variable $u=v^{-} 1$, and factor out $A=A^{1 / 2} \cdot A^{1 / 2}$. We get

$$
\begin{align*}
& \operatorname{Tr}\left(\left(u A+V_{\hat{\omega}}\right)^{2}+(\eta / 2)^{2}\right)^{-1} \\
& \quad \leq\left\|A^{-1}\right\| \operatorname{Tr}\left(E^{*}\left(u+A^{-1 / 2} V_{\hat{\omega}} A^{-1 / 2}\right)^{2}+\frac{\eta^{2}}{4\|A\|}\right)^{-1} \tag{8}
\end{align*}
$$

Integrate over u first and then $d \hat{w}_{i}$'s. We finally get

$$
\mathbb{E} \operatorname{tr} P_{I}\left(H_{\omega}^{\wedge, \lambda}\right) \leq C|I||\Lambda|^{2}\left(E^{*}\right)^{-3 / 2}
$$

Outline of the proof of Lemma 1

- Resolvent expansion near the self-energy, and the range of localization follows from the bound on the self-energy.
- Renormalization (cancellation of tadpoles).
- Extraction of exponential decay.
- Diagramatic estimation on the resulting integral.

Resolvent expansion

Decompose H_{ω}^{λ} as
$H_{\omega}^{\lambda}=H_{r}+\tilde{V}, \quad H_{r}:=-\frac{1}{2} \Delta-\sigma(p, E+i \epsilon), \quad \tilde{V}:=\lambda V_{\omega}+\sigma(p, E+i \epsilon)$,
Let $R_{r}:=\left(H_{r}-E-i \epsilon\right)^{-1}$ We can expand R into resolvent series

$$
\begin{equation*}
R=\sum_{i=0}^{n}\left(-R_{r} \tilde{V}\right)^{i} R_{r}+\left(-R_{r} \tilde{V}\right)^{n+1} R \tag{9}
\end{equation*}
$$

Stop expansion term by term at order N. An order of a term is the number of appearances of σ and V_{ω}, where σ counts as 2 . Thus $R_{r} \sigma R_{r} \lambda V_{\omega} R_{r} \sigma R$ has order 5. The following is the expansion for $N=2$ following this stopping rule.

$$
\begin{aligned}
& R=R_{r}-R_{r} \sigma R-\{ \left.\lambda R_{r} V_{\omega} R\right\}= \\
& R_{r}-R_{r} \sigma R-\lambda R_{r} V_{\omega} R_{r} \\
& \quad+\lambda R_{r} V_{\omega} R_{r} \sigma R+\lambda^{2} R_{r} V_{\omega} R_{r} V_{\omega} R
\end{aligned}
$$

An example

The advantage of the above stopping rule is that all tadpoles will be cancelled. The following example illustrates this idea. Consider all the terms of order 4 in the expansion.

$$
\begin{aligned}
& \lambda^{4} R_{r} V_{\omega} R_{r} V_{\omega} R_{r} V_{\omega} R_{r} V_{\omega} R_{r}, \quad-\lambda^{2} R_{r} V_{\omega} R_{r} V_{\omega} R_{r} \sigma R_{r}, \\
& \quad-\lambda^{2} R_{r} V_{\omega} R_{r} \sigma R_{r} V_{\omega} R_{r}, \quad-\lambda^{2} R_{r} \sigma R_{r} V_{\omega} R_{r} V_{\omega} R_{r}, \quad R_{r} \sigma R_{r} \sigma R_{r}
\end{aligned}
$$

The expectation of the product of random variables will give us some delta functions.

$$
\begin{aligned}
& \mathbb{E}\left[\omega\left(x_{1}\right) \omega\left(x_{2}\right) \omega\left(x_{3}\right) \omega\left(x_{4}\right)\right] \\
= & \left(1-\delta\left(x_{1}-x_{3}\right)\right) \delta\left(x_{1}-x_{2}\right) \delta\left(x_{3}-x_{4}\right)+\left(1-\delta\left(x_{1}-x_{2}\right)\right) \delta\left(x_{1}-x_{3}\right) \delta\left(x_{2}-x_{4}\right) \\
& +\left(1-\delta\left(x_{1}-x_{3}\right)\right) \delta\left(x_{1}-x_{4}\right) \delta\left(x_{2}-x_{3}\right)+\tilde{c}_{4} \delta\left(x_{1}-x_{2}\right) \delta\left(x_{3}-x_{4}\right) \delta\left(x_{1}-x_{3}\right) \\
= & \delta\left(x_{1}-x_{2}\right) \delta\left(x_{3}-x_{4}\right)+\delta\left(x_{1}-x_{3}\right) \delta\left(x_{2}-x_{4}\right)+\delta\left(x_{1}-x_{4}\right) \delta\left(x_{2}-x_{3}\right) \\
& +\left(\tilde{c}_{4}-3\right) \delta\left(x_{1}-x_{2}\right) \delta\left(x_{3}-x_{4}\right) \delta\left(x_{1}-x_{3}\right)
\end{aligned}
$$

Set $c_{4}=\tilde{c}_{4}-3$, notice $\sigma=\lambda^{2} R_{r}(x, x)$

$$
\begin{aligned}
& \mathbb{E}\left\langle\lambda^{4} x R_{r} v_{\omega} R_{r} V_{\omega} R_{r} v_{\omega} R_{r} V_{\omega} R_{r} y\right\rangle \\
= & \sum_{x_{1}, x_{2}, x_{3}, x_{4}}\left\langle x R_{r} x_{1}\right\rangle\left\langle x_{1} R_{r} x_{2}\right\rangle\left\langle x_{2} R_{r} x_{3}\right\rangle\left\langle x_{3} R_{r} x_{4}\right\rangle\left\langle x_{4} R_{r} y\right\rangle \mathbb{E}\left[\omega_{x_{1}} \omega_{x_{2}} \omega_{x_{3}} \omega_{x_{4}}\right] \\
= & \sigma^{2}\left\langle x R_{r}^{3} y\right\rangle+\lambda^{4} \sum_{x_{1}, x_{2}}\left\langle x R_{r} x_{1}\right\rangle\left\langle x_{1} R_{r} x_{2}\right\rangle\left\langle x_{2} R_{r} x_{1}\right\rangle\left\langle x_{1} R_{r} x_{2}\right\rangle\left\langle x_{2} R_{r} y\right\rangle \\
+ & \lambda^{2} \sigma \sum_{x_{1}}\left\langle x R_{r} x_{1}\right\rangle\left\langle x_{1} R_{r}^{2} x_{1}\right\rangle\left\langle x_{1} R_{r} y\right\rangle+c_{4} \lambda^{4} \sum_{x_{1}}\left\langle x R_{r} x_{1}\right\rangle\left\langle x_{1} R_{r} x_{1}\right\rangle^{3}\left\langle x_{1} R_{r} x_{1}\right\rangle
\end{aligned}
$$

The tadpoles are the first term and third terms. The first term is equal to $\mathbb{E}\left\langle x \lambda^{2} R_{r} V_{\omega} R_{r} V_{\omega} R_{r} \sigma R_{r} y\right\rangle, \mathbb{E}\left\langle x \lambda^{2} R_{r} \sigma R_{r} V_{\omega} R_{r} V_{\omega} R_{r} y\right\rangle$, and $\mathbb{E}\left\langle x R_{r} \sigma R_{r} \sigma R_{r} y\right\rangle$. The third term is equal to $\mathbb{E}\left\langle x \lambda^{2} R_{r} V_{\omega} R_{r} \sigma R_{r} V_{\omega} R_{r} y\right\rangle$. So they cancel out exactly. This is the case when the single cite function is the delta function.

An example

When the single cite potential is of the more general form

$$
V_{\omega}(x)=\lambda \sum_{i \in \mathbb{Z}^{d}} q_{i}(\omega) u(x-i)
$$

we represent it in its Fourier transform. Using

$$
R_{r}(z, w)=\int e^{i 2 \pi(z-p)} \frac{d^{3} p}{E(p)}, \quad \hat{V}_{\omega}(p)=\hat{u}(p) \hat{\omega}(p)
$$

We get for $\mathbb{E}\left\langle\lambda^{4} x R_{r} V_{\omega} R_{r} V_{\omega} R_{r} V_{\omega} R_{r} V_{\omega} R_{r} y\right\rangle$

$$
\begin{aligned}
\int_{\left(\mathbb{T}^{3}\right)^{5}} e^{2 \pi i\left(p_{1} x-p_{5} y\right)} & \prod_{i=1}^{5} \frac{d^{3} p_{i}}{E\left(p_{i}\right)} \prod_{i=1}^{4} \hat{u}\left(p_{i}-p_{i+1}\right) \\
& \mathbb{E}\left[\hat{\omega}\left(p_{1}-p_{2}\right) \hat{\omega}\left(p_{2}-p_{3}\right) \hat{\omega}\left(p_{3}-p_{4}\right) \hat{\omega}\left(p_{4}-p_{5}\right)\right]
\end{aligned}
$$

and the renormalization process goes through.

General case

Some combinatorics will show the renormalization is true for general N. Without concerning too much details of the notation, we present the following identity.

$$
\mathbb{E}\left[\prod_{j \in \Upsilon_{N, N}} \omega_{x_{j}}\right]=\sum_{m=1}^{N} \sum_{\pi=\left\{S_{j}\right\}_{j=1}^{m}} \prod_{j=1}^{m} c_{\left|S_{j}\right|} \delta\left(x_{S_{j}}\right),
$$

where

$$
\delta\left(x_{S}\right)=\sum_{y \in \mathbb{Z}^{3}} \prod_{j \in S} \delta_{\left|x_{j}-y\right|},
$$

and $c_{2 I} \leq(c l)^{2 /+1}, c_{2}=\mathbb{E} \omega_{x}^{2}=1$. If S_{j} in $\pi \in \Pi$ has form $S_{j}=\{i, i+1\}$, we refer to it as a tadpole. Then the following lemma is a result of the following identity

$$
\sum_{k=0}^{N}(-1)^{k} \sum_{\substack{\pi \in \prod_{:} \\ \pi=\pi_{k}^{c} \cup\{S\}}} \mathbb{E}\left[\prod_{i \in S} \omega_{x_{i}}\right] \prod_{S_{l} \in \pi_{k}^{c}} \delta\left(x_{S_{l}}\right)=\sum_{\substack{\pi \in \Pi_{i}: \\ \pi=\pi_{0}}} \prod_{S_{j} \in \pi} c_{\left|S_{j}\right|} \delta\left(x_{S_{j}}\right)
$$

Lemma 2

For A_{l} defined in Lemma 1，the function $\mathbb{E}\left|A_{l}(x, y)\right|^{2}$ is a function of the variable $x-y$ ．Let

$$
\mathcal{A}_{l, E}(x-y):=\mathbb{E}\left|A_{l}(x, y)\right|^{2}
$$

then we have

$$
\begin{align*}
& \mathbb{E}\left|\mathcal{A}_{l}(x, y)\right|^{2}= \\
& \quad \lambda^{2 \prime} \int_{\left(\mathbb{T}^{3}\right)^{2 l+2}} e^{i \alpha} \frac{d p_{l+1}}{E\left(p_{l+1}\right)} \frac{d p_{2 I+2}}{E\left(p_{2 l+2}\right)} \prod_{j=1}^{\prime} \frac{d p_{j}}{E\left(p_{j}\right)} \prod_{j=l+2}^{2 /+1} \frac{d p_{j}}{E^{*}\left(p_{j}\right)} \\
& \quad \times \prod_{i \in \Upsilon_{I}} \hat{u}\left(p_{j}-p_{j+1}\right) \sum_{\substack{\pi \in \Pi_{l}: \\
\pi=\pi_{0}}} \prod_{S_{k} \in \pi} c_{\left|S_{k}\right|} \delta\left(\sum_{i \in S_{k}} p_{i}-p_{i+1}\right), \tag{10}
\end{align*}
$$

We first want to establish the exponential decay of $\mathcal{A}_{l, E}(x-y)$ in $|x-y|$ We will show that for a general value of I,

$$
\begin{equation*}
\mathcal{A}_{l, E}(x) \leq\|\hat{u}\|_{\infty, \mathcal{R}}^{2 l} \cdot e^{-\sqrt{\delta / 3}|x|} \hat{\mathcal{A}}_{l, E^{*}}(0), \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{\mathcal{A}}_{l, E^{*}}(0):= \\
& \lambda^{2 l} \int_{\left(\mathbb{T}^{3}\right)^{2 l+2}} e^{i \alpha} \frac{d p_{l+1}}{e\left(p_{l+1}\right)+E^{*}} \frac{d p_{2 I+2}}{e\left(p_{2 l+2}\right)+E^{*}} \prod_{j \in \Upsilon_{l}} \frac{d p_{j}}{e\left(p_{j}\right)+E^{*}} \\
& \times \sum_{\substack{\pi \in \Pi_{l}: \\
\pi=\pi_{0}}} \prod_{S_{k} \in \pi} c_{\left|S_{k}\right|} \delta\left(\sum_{i \in S_{k}} p_{i}-p_{i+1}\right) . \tag{12}
\end{align*}
$$

The expression $\hat{\mathcal{A}}_{l, E^{*}}(0)$ has been studied in Elgart(2009) before and shown that

$$
\begin{equation*}
\hat{\mathcal{A}}_{l, E^{*}}(0) \leq(4 /)!E^{*}\left(C \ln ^{9}\left(E^{*}\right) \frac{\lambda^{2}}{\sqrt{E^{*}}}\right)^{\prime} \tag{13}
\end{equation*}
$$

Using the delta function introduced before and integrate over the tree momenta．Let $E(p)=e(p)-E-i \epsilon-\sigma(p, E+i \epsilon)$ ．

$$
\begin{aligned}
& \mathcal{A}_{l, E}(x)=\lambda^{2 l} \sum_{\pi} c_{\pi} \int d w_{1} e^{-i 2 \pi w_{1} \cdot x} \prod_{i=1}^{r_{\pi}} \frac{1}{E^{\sharp}\left(w_{1}+q_{i}\right)} \prod_{j=1}^{s_{\pi}} \hat{u}\left(w_{1}+Q_{j}\right)
\end{aligned}
$$

where $E^{\sharp}(p)$ stands for either $E(p)$ or $E^{*}(p), \Phi^{\prime}$ is a set of indices of loop momentum that does not include w_{1} ，and q_{i}, Q_{j} are some linear combinations of the loop variables in Φ^{\prime} ．Note now that the integral with respect to w_{1} becomes

$$
\begin{align*}
& \int d w_{1}^{\perp} e^{-i 2 \pi\left(w_{1} \cdot x-\left(w_{1} \cdot e_{\gamma}\right) x_{\gamma}\right)} \times \\
& \int_{-1 / 2}^{1 / 2} d\left(w_{1} \cdot e_{\gamma}\right) \prod_{i=1}^{r_{\pi}} \frac{1}{E^{\sharp}\left(w_{1}+q_{i}\right)} e^{-i 2 \pi\left(w_{1} \cdot e_{\gamma}\right) x_{\gamma}} \prod_{j=1}^{s_{\pi}} \hat{u}\left(w_{1}+Q_{j}\right) \tag{14⿱亠䒑木}
\end{align*}
$$

The exponential decay is established by extending the second part of (14) to complex coordinate. Let \mathcal{R} denote

$$
\{-1 / 2 \pm i \sqrt{\delta} ; 1 / 2 \pm i \sqrt{\delta}\} .
$$

This integral is periodic over vertical segments of \mathcal{R} and therefore

$$
\begin{align*}
& \left|\int_{\mathbb{T}} d\left(w_{1} \cdot e_{\gamma}\right) \prod_{i=1}^{r_{\pi}} \frac{1}{E^{\sharp}\left(w_{1}+q_{i}\right)} e^{-i 2 \pi x_{\gamma}\left(w_{1} \cdot e_{\gamma}\right)} \prod_{j=1}^{s_{\pi}} \hat{u}\left(w_{1}+Q_{j}\right)\right| \\
& =\left|\int_{\mathbb{T}-i \sqrt{\delta}} d\left(w_{1} \cdot e_{\gamma}\right) \prod_{i=1}^{r_{\pi}} \frac{1}{E^{\sharp}\left(w_{1}+q_{i}\right)} e^{-i 2 \pi x_{\gamma}\left(w_{1} \cdot e_{\gamma}\right)} \prod_{j=1}^{s_{\pi}} \hat{u}\left(w_{1}+Q_{j}\right)\right| \\
& \quad \leq\|\hat{u}\|_{\infty, E^{*}}^{s_{\pi}} \cdot e^{-|x| \sqrt{E^{*} / 3}} \int_{\mathbb{T}} d\left(w_{1} \cdot e_{\gamma}\right) \prod_{i=1}^{r_{\pi}} \frac{1}{e\left(w_{1}+q_{i}\right)+E^{*}}, \tag{15}
\end{align*}
$$

Now we have arrived at (11).

Properties of self-energy $\sigma(p, E)$

Recall the self energy term σ, associated with H_{ω}^{λ}, is given by the solution of the self-consistent equation

$$
\begin{equation*}
\sigma(p, E+i \epsilon)=\lambda^{2} \int_{\mathbb{T}^{3}} d^{3} q \frac{|\hat{u}(p-q)|^{2}}{e(q)-E-i \epsilon-\sigma(q, E+i \epsilon)} . \tag{16}
\end{equation*}
$$

We need existence, periodicity, and analyticity of the self energy operator $\sigma(p, E+i \epsilon)$. Consider space

$$
L\left(\mathbb{T}^{3}\right)=\left\{f: \mathbb{T}^{3} \rightarrow \mathbb{C} \mid\|f\|_{\infty}<\infty, f \text { is real analytic }\right\}
$$

and define map $T_{\epsilon}: L\left(\mathbb{T}^{3}\right) \rightarrow L\left(\mathbb{T}^{3}\right)$ pointwise as

$$
\begin{equation*}
\left(T_{\epsilon} f\right)(p)=\lambda^{2} \int_{\mathbb{T}^{3}} d^{3} q \frac{|\hat{u}(p-q)|^{2}}{e(q)-E-i \epsilon-f(q)} \tag{17}
\end{equation*}
$$

Then T_{ϵ} is a contraction on the ball $B_{\beta}(0)$ where $\beta=2 \lambda^{2}\|\hat{u}\|_{\infty}^{2}$ for all p, ϵ and $E \leq E_{0}=-2 \lambda^{2}\|\hat{u}\|_{\infty}^{2}-2 \lambda^{4}\|\hat{u}\|_{\infty}^{4}$.

- M. Aizenman, Localization at weak disorder: some elementary bounds, Rev. Math. Phys.,6:1163-1182, 1994.
- T. Chen, Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3, J. Stat. Phys., 120:279-337, 2004.
- A. Elgart, Lifshitz tails and localization in the three-dimensional Anderson model, Duke Math. J., 146:331-360, 2009.
- L. Erdos and H.-T. Yau, Linear Bolzmann equation as the weak coupling limit of the random Schrödinger equation, Commun. Pure. Appl. Math., LIII:667-735, 2000.
- J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys., 88:151-184, 1983.
- F. Klopp, Localization for some continuous random Schrödinger operators, Comm. Math. Phys., 167: 553-569, 1995.

Thank you

Thank you!

