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Setup

Consider the random Schrödinger operator of the following type

(Hλ
ωψ)(x) := −1

2
(∆ψ)(x) + λVω(x)ψ(x) .

Here ∆ denotes the discrete Laplace operator,

(∆ψ)(x) =
∑

e∈Z3, |e|=1

ψ(x + e) − 6ψ(x) ,

and Vω stands for a random multiplication operator of the form

Vω(x) =
∑
i∈Z3

ωi u(x − i) .

Note the spectrum of the unperturbed operator H0
w is absolutely

continuous and is the interval [0, 6].
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Background

For 3D models, the first weak localization result for the
Anderson model was proved by Frölich and Spencer(1983)
through multiscale analysis.

There are many results quantifying the weak localization
region when the single cite potential is a delta function. For
example, Aizenman(1994) shows there is localization in the
region [−aλ,−aλ+ λ5/4]. Klopp(2002) derives a upper bound
on the of order −λ7/6. Elgart(2009) pushes the upper bound
to −λ2 by using a Feynman diagrammatic techinque.

This work extends the results in Elgart(2009) to a general
single cite potential. Related work on diagramatic techniques
includes Erdos and Yau(2000) and Chen(2005). Notice
non-monotonicity of the single cite potential poses a problem
in deriving Wegner’s estimate. Also there are issues involving
employing the diagramatic technique.
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Assumptions

u decays exponentially fast:

|u(x)| ≤ Ce−A|x |

u is compactly supported.

The random variables {ωi} are independent, identically
distributed, even, and compactly supported on an interval J,
with bounded probability density ρ. Moreover, function ρ is
Lipschitz continuous:

|ρ(x)− ρ(y)| ≤ K |x − y |

The moments of ωi satisfy

E[ω2m
i ] = c̃2m ≤ (2m)!cv , c̃2 = 1, ∀i ∈ Z3,m ∈ N
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Results

Let û denotes the Fourier transform of u.

û(p) =
∑
n∈Z3

e−i2πp·nu(n), p ∈ T3 = [−1/2, 1/2]3

Spectral localization

E0 = −2λ2||û||2∞ − 2λ4||û||4∞ (1)

For any α > 0 there exists λ0(α) such that for all λ < λ0(α) the
spectrum of Hω within the set E < E0 − λ4−α is almost surely of
the pure-point type, and the corresponding eigenfunctions are
exponentially localized.
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Lemma 1
For any integer N and energies E that satisfy the condition of
above theorem we have the decomposition

R(x , y) =
N−1∑
n=0

An(x , y) +
∑
z∈Z3

ÃN(x , z)R(z , y) ,

with A0(x , y) = Rr (x , y), and where the (real valued) kernels
An, ÃN satisfy bounds

E|An(x , y)|2 ≤ (4n)! E ∗
(

C (E ∗)
λ2

√
E ∗

)n

e−δ |x−y | , n ≥ 1 ;

E|ÃN(x , y)| ≤
√

(4N)!

(
C (E ∗)

λ2

√
E ∗

)N/2

e−δ |x−y |/2 , N > 1 ;

where δ :=
√

E0 − E − E ∗/(
√

6π).
The zero order contribution A0 satisfies

|A0(x , y)| ≤ 2 e
− δ

3
√

3
|x−y |

(2)

for all x , y ∈ Z3.



Proof of the theorem

Using above lemma, choosing (4N)4 =
√
E∗

C(E∗)λ2 , we get a bound

E|R(E + iε; x , k)| ≤ C

(
e−δ L/2 +

e−N

ε δ

)
.

Hence we obtain

E|RΛL,x
(E + iε; x ,w)|

≤ E|R(E + iε; x ,w)| + E|RΛL,x
(E + iε; x ,w) − R(E + iε; x ,w)|

≤ C
L2

ε
max

dist(k,∂Λ)≤1
E|R(E + iε; x , k)|

≤ C
L2

ε

[
e−δ L/2 +

e−N

εδ

]
. (3)

Let I = [E − ε1/4,E + ε1/4], and consider two events, the first one
is Gω(I ) :=

{
ω ∈ Ω : σ(HΛL,x

) ∩ I = ∅
}

, the other one is
σ(HΛL,x

) ∩ I 6= ∅ For the first part, since∣∣RΛL,x
(E + iε; x ,w)− RΛL,x

(E ; x ,w)
∣∣ ≤ ε1/2 .



Proof of the theorem
Pairing this bound with (3) and using Chebyshev’s inequality

Prob

{
ω ∈ Gω(I ) : |RΛL,x

(E ; x ,w)| ≥ C
L2

ε5/4

[
e−δ L/2 +

e−N

εδ

]
+ ε1/4

}
≤ Cε1/4 . (4)

The Wegner estimate implies that for the second event

Prob
{
σ(HΛL,x

)∩I 6= ∅
}
≤ C |I | |ΛL,x |2 D−3/2 = C ε1/4 D−3/2 L4 .

(5)
Combining (4) and (5) we arrive at

Prob

{
|RΛL,x

(E ; x ,w)| ≥ C
L2

ε4/3

[
e−δ L/2 +

e−N

εδ

]
+ ε1/4

}
≤ Cε1/4D−3/2L4 .

Choose E ∗ = λ4−α/2, L = λ−2 and ε = e−4λ−B′α/2
we get the

following initial volume estimate

Prob
{
|RΛλ−2,x

(E ; x ,w)| ≥ e−λ
−B′α/2

}
≤ e−λ

−B′α/2
. (6)



Wegner’s estimate

Wegner’s estimate

Let I be an open interval of energies such that

D := dist(I , σ(H0
ω)) > 0 .

Then we have

E trPI (HΛ,λ
ω ) ≤ C |I | |Λ|2 D−3/2 , (7)

where HΛ,λ
ω denotes a natural restriction of Hλ

ω to Λ ⊂ Z3.

This Wegner’s estimate may not be the optimal one, as in the δ
potential case, where it is Λ instead of Λ2. But suffice for the proof
of localization.



Proof of Wegner’s estimate
Notice

EFω =

∫
Fω
∏
i∈Λ

ρ(ωi )dωi =
1

2δ

∫ 1+δ

1−δ
v |Λ|dv

∫
Fv ω̂

∏
i∈Λ

ρ(v ω̂i )d ω̂i .

E tr Im
(

HΛ,λ
ω − E − iη

)−1

≤ e

2δ

∫ 1+δ

1−δ
dv

∫
η

v 2
tr
(
(v−1A + Vω̂)2 + (η/2)2

)−1∏
i∈Λ

ρ(v ω̂i )d ω̂i .

where A = ∆Λ − E is positive. Change variable u = v−1, and
factor out A = A1/2 · A1/2. We get

Tr
(
(uA + Vω̂)2 + (η/2)2

)−1

≤
∥∥A−1

∥∥ Tr

(
E ∗(u + A−1/2Vω̂A−1/2)2 +

η2

4‖A‖

)−1

. (8)

Integrate over u first and then dŵi ’s. We finally get

E trPI (HΛ,λ
ω ) ≤ C |I | |Λ|2 (E ∗)−3/2 .
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Outline of the proof of Lemma 1

Resolvent expansion near the self-energy, and the range of
localization follows from the bound on the self-energy.

Renormalization (cancellation of tadpoles).

Extraction of exponential decay.

Diagramatic estimation on the resulting integral.
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Resolvent expansion

Decompose Hλ
ω as

Hλ
ω = Hr+Ṽ , Hr := −1

2
∆−σ(p,E +iε) , Ṽ := λVω+σ(p,E +iε) ,

Let Rr := (Hr − E − iε)−1 We can expand R into resolvent series

R =
n∑

i=0

(−Rr Ṽ )iRr + (−Rr Ṽ )n+1R . (9)

Stop expansion term by term at order N. An order of a term is the
number of appearances of σ and Vω, where σ counts as 2. Thus
RrσRrλVωRrσR has order 5. The following is the expansion for
N = 2 following this stopping rule.

R = Rr − RrσR − {λRrVωR} =

Rr − RrσR − λRrVωRr

+ λRrVωRrσR + λ2RrVωRrVωR ,



An example

The advantage of the above stopping rule is that all tadpoles will
be cancelled. The following example illustrates this idea. Consider
all the terms of order 4 in the expansion.

λ4RrVωRrVωRrVωRrVωRr , −λ2RrVωRrVωRrσRr ,

− λ2RrVωRrσRrVωRr , −λ2RrσRrVωRrVωRr , RrσRrσRr

The expectation of the product of random variables will give us
some delta functions.

E[ω(x1)ω(x2)ω(x3)ω(x4)]

= (1−δ(x1−x3))δ(x1−x2)δ(x3−x4) + (1−δ(x1−x2))δ(x1−x3)δ(x2−x4)

+ (1−δ(x1−x3))δ(x1−x4)δ(x2−x3) + c̃4δ(x1−x2)δ(x3−x4)δ(x1−x3)

= δ(x1−x2)δ(x3−x4) + δ(x1−x3)δ(x2−x4) + δ(x1−x4)δ(x2−x3)

+ (c̃4 − 3)δ(x1 − x2)δ(x3 − x4)δ(x1 − x3)

Set c4 = c̃4 − 3, notice σ = λ2Rr (x , x)



An example

E〈λ4xRrVωRrVωRrVωRrVωRry〉

=
∑

x1,x2,x3,x4

〈xRrx1〉〈x1Rrx2〉〈x2Rrx3〉〈x3Rrx4〉〈x4Rry〉E[ωx1ωx2ωx3ωx4 ]

= σ2〈xR3
r y〉+ λ4

∑
x1,x2

〈xRrx1〉〈x1Rrx2〉〈x2Rrx1〉〈x1Rrx2〉〈x2Rry〉

+λ2σ
∑
x1

〈xRrx1〉〈x1R2
r x1〉〈x1Rry〉+ c4λ

4
∑
x1

〈xRrx1〉〈x1Rrx1〉3〈x1Rrx1〉

The tadpoles are the first term and third terms. The first term is
equal to E〈xλ2RrVωRrVωRrσRry〉, E〈xλ2RrσRrVωRrVωRry〉, and
E〈xRrσRrσRry〉. The third term is equal to
E〈xλ2RrVωRrσRrVωRry〉. So they cancel out exactly. This is the
case when the single cite function is the delta function.



An example

When the single cite potential is of the more general form

Vω(x) = λ
∑
i∈Zd

qi (ω)u(x − i),

we represent it in its Fourier transform. Using

Rr (z ,w) =

∫
e i2π(z−p) d3p

E (p)
, V̂ω(p) = û(p)ω̂(p),

We get for E〈λ4xRrVωRrVωRrVωRrVωRry〉

∫
(T3)5

e2πi(p1x−p5y)
5∏

i=1

d3pi

E (pi )

4∏
i=1

û(pi − pi+1)

E [ω̂(p1 − p2)ω̂(p2 − p3)ω̂(p3 − p4)ω̂(p4 − p5)]

and the renormalization process goes through.



General case
Some combinatorics will show the renormalization is true for
general N. Without concerning too much details of the notation,
we present the following identity.

E

 ∏
j∈ΥN,N

ωxj

 =
N∑

m=1

∑
π={Sj}mj=1

m∏
j=1

c|Sj |δ(xSj ) ,

where
δ(xS) =

∑
y∈Z3

∏
j∈S

δ|xj−y | ,

and c2l ≤ (cl)2l+1, c2 = Eω2
x = 1. If Sj in π ∈ Π has form

Sj = {i , i + 1}, we refer to it as a tadpole. Then the following
lemma is a result of the following identity

N∑
k=0

(−1)k
∑
π∈Π:

π=πc
k∪{S}

E

[∏
i∈S

ωxi

] ∏
Sl∈πc

k

δ(xSl ) =
∑
π∈Π:
π=π0

∏
Sj∈π

c|Sj |δ(xSj ) .



Lemma 2

Lemma 2

For Al defined in Lemma 1, the function E |Al(x , y)|2 is a function
of the variable x − y . Let

Al ,E (x − y) := E |Al(x , y)|2 ,

then we have

E|Al(x , y)|2 =

λ2l

∫
(T3)2l+2

e iα
dpl+1

E (pl+1)

dp2l+2

E (p2l+2)

l∏
j=1

dpj

E (pj)

2l+1∏
j=l+2

dpj

E ∗(pj)

×
∏
i∈Υl

û(pj − pj+1)
∑
π∈Πl :
π=π0

∏
Sk∈π

c|Sk | δ

∑
i∈Sk

pi − pi+1

 , (10)



Proof of the Lemma 1
We first want to establish the exponential decay of Al ,E (x − y) in
|x − y | We will show that for a general value of l ,

Al ,E (x) ≤ ‖û‖2l
∞,R · e−

√
δ/3 |x | Âl ,E∗(0) , (11)

where

Âl ,E∗(0) :=

λ2l

∫
(T3)2l+2

e iα
dpl+1

e(pl+1) + E ∗
dp2l+2

e(p2l+2) + E ∗

∏
j∈Υl

dpj

e(pj) + E ∗

×
∑
π∈Πl :
π=π0

∏
Sk∈π

c|Sk | δ

∑
i∈Sk

pi − pi+1

 . (12)

The expression Âl ,E∗(0) has been studied in Elgart(2009) before
and shown that

Âl ,E∗(0) ≤ (4l)! E ∗
(

C ln9(E ∗)
λ2

√
E ∗

)l

. (13)



Proof of the Lemma 1
Using the delta function introduced before and integrate over the
tree momenta. Let E (p) = e(p)− E − iε− σ(p,E + iε).

Al ,E (x) = λ2l
∑
π

cπ

∫
dw1 e−i2πw1·x

rπ∏
i=1

1

E ](w1 + qi )

sπ∏
j=1

û(w1+Qj)

×
∫

e−i2πw2·x
∏
t∈Φ′

dwt

2n+2∏
i=rπ+1

1

E ](qi )

2n∏
j=sπ+1

û(Qj) ,

where E ](p) stands for either E (p) or E ∗(p), Φ′ is a set of indices
of loop momentum that does not include w1, and qi , Qj are some
linear combinations of the loop variables in Φ′. Note now that the
integral with respect to w1 becomes∫

dw⊥1 e−i2π(w1·x−(w1·eγ)xγ)×∫ 1/2

−1/2
d(w1 · eγ)

rπ∏
i=1

1

E ](w1 + qi )
e−i2π(w1·eγ)xγ

sπ∏
j=1

û(w1 + Qj)

(14)



Proof of the Lemma 1

The exponential decay is established by extending the second part
of (14) to complex coordinate. Let R denote

{ −1/2± i
√
δ; 1/2± i

√
δ} .

This integral is periodic over vertical segments of R and therefore∣∣∣∣∣∣
∫
T

d(w1 · eγ)
rπ∏
i=1

1

E ](w1 + qi )
e−i2πxγ (w1·eγ)

sπ∏
j=1

û(w1 + Qj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
T−i
√
δ

d(w1 · eγ)
rπ∏
i=1

1

E ](w1 + qi )
e−i2πxγ (w1·eγ)

sπ∏
j=1

û(w1 + Qj)

∣∣∣∣∣∣
≤ ‖û‖sπ∞,E∗ · e

−|x |
√

E∗/3

∫
T

d(w1 · eγ)
rπ∏
i=1

1

e(w1 + qi ) + E ∗
,

(15)

Now we have arrived at (11).



Properties of self-energy σ(p,E )

Recall the self energy term σ, associated with Hλ
ω , is given by the

solution of the self-consistent equation

σ(p,E + iε) = λ2

∫
T3

d3q
|û(p − q)|2

e(q)− E − iε− σ(q,E + iε)
. (16)

We need existence, periodicity, and analyticity of the self energy
operator σ(p,E + iε). Consider space

L(T3) = {f : T3 → C
∣∣ ‖f ‖∞ <∞ , f is real analytic} .

and define map Tε : L(T3)→ L(T3) pointwise as

(Tεf )(p) = λ2

∫
T3

d3q
|û(p − q)|2

e(q)− E − iε− f (q)
. (17)

Then Tε is a contraction on the ball Bβ(0) where β = 2λ2||û||2∞
for all p, ε and E ≤ E0 = −2λ2‖û‖2

∞ − 2λ4‖û‖4
∞.
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