Fractional moment localization in a system of interacting particles in an alloy-type random potential

Michael Fauser
Technische Universität München

March 16, 2012
joint work with Simone Warzel

The model

Consider a random Schrödinger operator for a system of n interacting particles in \mathbb{R}^{d}, acting on $L^{2}\left(\mathbb{R}^{d}\right)^{n} \cong L^{2}\left(\mathbb{R}^{d n}\right)$:

$$
H^{(n)}(\omega)=\sum_{j=1}^{n}\left(-\Delta_{j}+V_{0}\left(x_{j}\right)+V\left(\omega, x_{j}\right)\right)+\alpha \sum_{j<k} W\left(x_{j}-x_{k}\right)
$$

- $V_{0} \in L^{\infty}\left(\mathbb{R}^{d}\right): \mathbb{Z}^{d}$-periodic background potential
- $V(\omega)$: alloy-type random potential:

$$
V(\omega, x)=\sum_{\zeta \in \mathbb{Z}^{d}} \eta_{\zeta}(\omega) U(x-\zeta)
$$

- $U \in L_{c}^{\infty}\left(\mathbb{R}^{d}\right), \sum_{\zeta} U(x-\zeta) \geq 1$ for all $x \in \mathbb{R}^{d}$
- $\left(\eta_{\zeta}\right)_{\zeta \in \mathbb{Z}^{d}}$: iid random variables with density $\rho \in L_{c}^{\infty}(\mathbb{R})$
- $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$: exponentially decaying interaction potential, strength controlled via $\alpha \geq 0$

Goal:

Dynamical localization in an interval $I=\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ at the bottom $E_{0}^{(n)}=\inf \sigma\left(H^{(n)}\right)$ of the spectrum:

$$
\mathbb{E}\left[\sup _{t \in \mathbb{R}}\left\|\mathbf{1}_{B_{1}(\mathbf{x})} e^{-i t H^{(n)}} P_{l}\left(H^{(n)}\right) \mathbf{1}_{B_{1}(\mathbf{y})}\right\|\right] \leq C e^{-\mu \operatorname{dist}_{H}(\mathbf{x}, \mathbf{y})}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d n}$.

- $P_{l}\left(H^{(n)}\right)=$ spectral projection of $H^{(n)}$ onto I
- $\operatorname{dist}_{H}(\mathbf{x}, \mathbf{y})=\max \left\{\max _{j} \min _{k}\left|x_{j}-y_{k}\right|, \max _{j} \min _{k}\left|y_{j}-x_{k}\right|\right\}$
$=$ Hausdorff distance of the sets $\left\{x_{j} \mid 1 \leq j \leq n\right\}$ and $\left\{y_{j} \mid 1 \leq j \leq n\right\}$

Goal:

Dynamical localization in an interval $I=\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ at the bottom $E_{0}^{(n)}=\inf \sigma\left(H^{(n)}\right)$ of the spectrum:

$$
\mathbb{E}\left[\sup _{t \in \mathbb{R}}\left\|\mathbf{1}_{B_{1}(\mathbf{x})} e^{-i t H^{(n)}} P_{l}\left(H^{(n)}\right) \mathbf{1}_{B_{1}(\mathbf{y})}\right\|\right] \leq C e^{-\mu \operatorname{dist}_{H}(\mathbf{x}, \mathbf{y})}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d n}$.

- $P_{l}\left(H^{(n)}\right)=$ spectral projection of $H^{(n)}$ onto I
- $\operatorname{dist}_{H}(\mathbf{x}, \mathbf{y})=\max \left\{\max _{j} \min _{k}\left|x_{j}-y_{k}\right|, \max _{j} \min _{k}\left|y_{j}-x_{k}\right|\right\}$ $=$ Hausdorff distance of the sets $\left\{x_{j} \mid 1 \leq j \leq n\right\}$ and $\left\{y_{j} \mid 1 \leq j \leq n\right\}$

Related results:
Aizenman/Warzel '09, Chulaevsky/Suhov '09, Chulaevsky/Boutet de Monvel/Suhov '11, ...

Fractional moment localization

Definition

A bounded interval I is a regime of fractional moment (FM) localization in I if and only if there exist $s \in(0,1)$ and $C, \mu>0$ such that

$$
\sup _{\substack{\Omega \subset \mathbb{R}^{d} \\ \text { open, bd. } 0<|\ln z|<1}} \sup _{\substack{\text { Rez }\\}} \mathbb{E}\left[\left\|\mathbf{1}_{B_{1}(x)}\left(H_{\Omega}^{(n)}-z\right)^{-1} \mathbf{1}_{B_{1}(\mathbf{y})}\right\|^{s}\right] \leq C e^{-\mu \operatorname{dist}_{H}(\mathbf{x}, \mathbf{y})}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d n}$.
$H_{\Omega}^{(n)}=$ restriction of $H^{(n)}$ to Ω^{n} with Dirichlet boundary conditions

Fractional moment localization

Definition

A bounded interval I is a regime of fractional moment (FM) localization in I if and only if there exist $s \in(0,1)$ and $C, \mu>0$ such that

$$
\sup _{\substack{\Omega \subset \mathbb{R}^{d} \\ \text { open, bd. }}} \sup _{\substack{\operatorname{Rez} z \in I \\ 0<|\operatorname{Im} z|<1}} \mathbb{E}\left[\left\|\mathbf{1}_{B_{1}(\mathbf{x})}\left(H_{\Omega}^{(n)}-z\right)^{-1} \mathbf{1}_{B_{1}(\mathbf{y})}\right\|^{s}\right] \leq C e^{-\mu \operatorname{dist}_{H}(\mathbf{x}, \mathbf{y})}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d n}$.
$H_{\Omega}^{(n)}=$ restriction of $H^{(n)}$ to Ω^{n} with Dirichlet boundary conditions

Lemma

FM localization in I implies dynamical localization in I.

Main result

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $\left[E_{0}^{(1)}, E_{0}^{(1)}+\eta^{(1)}\right]$ (cf. Aizenman et al. '06).

Main result

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $\left[E_{0}^{(1)}, E_{0}^{(1)}+\eta^{(1)}\right]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in\left(0, \eta^{(1)}\right)$ there exists $\alpha^{(n)}>0$ such that for all $\alpha \in\left[0, \alpha^{(n)}\right]$ the interval $\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ is a regime of FM localization for $H^{(n)}$.

Main result

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $\left[E_{0}^{(1)}, E_{0}^{(1)}+\eta^{(1)}\right]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in\left(0, \eta^{(1)}\right)$ there exists $\alpha^{(n)}>0$ such that for all $\alpha \in\left[0, \alpha^{(n)}\right]$ the interval $\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ is a regime of FM localization for $H^{(n)}$.
- If $W \geq 0$, then for any $\alpha \geq 0$ there exists $\eta^{(n)} \in\left(0, \eta^{(1)}\right)$ such that the interval $\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ is a regime of FM localization for $H^{(n)}$.

Main result

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $\left[E_{0}^{(1)}, E_{0}^{(1)}+\eta^{(1)}\right]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in\left(0, \eta^{(1)}\right)$ there exists $\alpha^{(n)}>0$ such that for all $\alpha \in\left[0, \alpha^{(n)}\right]$ the interval $\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ is a regime of FM localization for $H^{(n)}$.
- If $W \geq 0$, then for any $\alpha \geq 0$ there exists $\eta^{(n)} \in\left(0, \eta^{(1)}\right)$ such that the interval $\left[E_{0}^{(n)}, E_{0}^{(n)}+\eta^{(n)}\right]$ is a regime of FM localization for $H^{(n)}$.

Current work:
Extension of these results to interactions with sufficiently fast polynomial decay

