Fractional moment localization in a system of interacting particles in an alloy-type random potential

Michael Fauser

Technische Universität München

March 16, 2012

joint work with Simone Warzel

The model

Consider a random Schrödinger operator for a system of *n* interacting particles in \mathbb{R}^d , acting on $L^2(\mathbb{R}^d)^n \cong L^2(\mathbb{R}^{dn})$:

$$H^{(n)}(\omega) = \sum_{j=1}^{n} (-\Delta_j + V_0(x_j) + V(\omega, x_j)) + \alpha \sum_{j < k} W(x_j - x_k)$$

• $V_0 \in L^\infty(\mathbb{R}^d)$: \mathbb{Z}^d -periodic background potential

V(ω): alloy-type random potential:

$$V(\omega, x) = \sum_{\zeta \in \mathbb{Z}^d} \eta_{\zeta}(\omega) U(x - \zeta)$$

- $U \in L^\infty_c(\mathbb{R}^d)$, $\sum_{\zeta} U(x-\zeta) \ge 1$ for all $x \in \mathbb{R}^d$
- $(\eta_{\zeta})_{\zeta\in\mathbb{Z}^d}$: iid random variables with density $ho\in L^\infty_c(\mathbb{R})$
- W ∈ L[∞](ℝ^d): exponentially decaying interaction potential, strength controlled via α ≥ 0

Goal:

Dynamical localization in an interval $I = [E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ at the bottom $E_0^{(n)} = \inf \sigma(H^{(n)})$ of the spectrum:

$$\mathbb{E}\bigg[\sup_{t\in\mathbb{R}}\big\|\mathbf{1}_{B_1(\mathsf{x})}e^{-it\mathcal{H}^{(n)}}\mathcal{P}_I(\mathcal{H}^{(n)})\mathbf{1}_{B_1(\mathsf{y})}\big\|\bigg]\leq Ce^{-\mu\operatorname{dist}_{\mathcal{H}}(\mathsf{x},\mathsf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

- $P_I(H^{(n)}) =$ spectral projection of $H^{(n)}$ onto I
- dist_H(**x**, **y**) = max{max_j min_k |x_j y_k|, max_j min_k |y_j x_k|} = Hausdorff distance of the sets {x_j | 1 ≤ j ≤ n} and {y_j | 1 ≤ j ≤ n}

Goal:

Dynamical localization in an interval $I = [E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ at the bottom $E_0^{(n)} = \inf \sigma(H^{(n)})$ of the spectrum:

$$\mathbb{E}\bigg[\sup_{t\in\mathbb{R}}\big\|\mathbf{1}_{B_1(\mathsf{x})}e^{-it\mathcal{H}^{(n)}}\mathcal{P}_I(\mathcal{H}^{(n)})\mathbf{1}_{B_1(\mathsf{y})}\big\|\bigg]\leq Ce^{-\mu\operatorname{dist}_{\mathcal{H}}(\mathsf{x},\mathsf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

- $P_I(H^{(n)}) =$ spectral projection of $H^{(n)}$ onto I
- dist_H(**x**, **y**) = max{max_j min_k |x_j y_k|, max_j min_k |y_j x_k|} = Hausdorff distance of the sets {x_j | 1 ≤ j ≤ n} and {y_j | 1 ≤ j ≤ n}

Related results:

Aizenman/Warzel '09, Chulaevsky/Suhov '09, Chulaevsky/Boutet de Monvel/Suhov '11, ...

Fractional moment localization

Definition

A bounded interval I is a regime of fractional moment (FM) localization in I if and only if there exist $s \in (0,1)$ and $C, \mu > 0$ such that

$$\sup_{\substack{\Omega \subset \mathbb{R}^d \\ \text{open, bd. } 0 < |\lim z| < 1}} \sup_{\mathbb{E} \left[\| \mathbf{1}_{B_1(\mathsf{x})} (\mathcal{H}_{\Omega}^{(n)} - z)^{-1} \mathbf{1}_{B_1(\mathsf{y})} \|^s \right] \le C e^{-\mu \operatorname{dist}_{\mathcal{H}}(\mathsf{x}, \mathsf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

 $H_{\Omega}^{(n)} =$ restriction of $H^{(n)}$ to Ω^{n} with Dirichlet boundary conditions

Fractional moment localization

Definition

A bounded interval I is a regime of fractional moment (FM) localization in I if and only if there exist $s \in (0, 1)$ and $C, \mu > 0$ such that

$$\sup_{\substack{\Omega \subset \mathbb{R}^d \\ \text{open, bd. } 0 < |\lim z| < 1}} \sup_{\mathbb{E} \left[\| \mathbf{1}_{B_1(\mathsf{x})} (\mathcal{H}_{\Omega}^{(n)} - z)^{-1} \mathbf{1}_{B_1(\mathsf{y})} \|^s \right] \le C e^{-\mu \operatorname{dist}_{\mathcal{H}}(\mathsf{x}, \mathsf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

 $H_{\Omega}^{(n)} =$ restriction of $H^{(n)}$ to Ω^{n} with Dirichlet boundary conditions

Lemma

FM localization in I implies dynamical localization in I.

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

• For any $\eta^{(n)} \in (0, \eta^{(1)})$ there exists $\alpha^{(n)} > 0$ such that for all $\alpha \in [0, \alpha^{(n)}]$ the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in (0, \eta^{(1)})$ there exists $\alpha^{(n)} > 0$ such that for all $\alpha \in [0, \alpha^{(n)}]$ the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.
- If W ≥ 0, then for any α ≥ 0 there exists η⁽ⁿ⁾ ∈ (0, η⁽¹⁾) such that the interval [E₀⁽ⁿ⁾, E₀⁽ⁿ⁾ + η⁽ⁿ⁾] is a regime of FM localization for H⁽ⁿ⁾.

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in (0, \eta^{(1)})$ there exists $\alpha^{(n)} > 0$ such that for all $\alpha \in [0, \alpha^{(n)}]$ the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.
- If W ≥ 0, then for any α ≥ 0 there exists η⁽ⁿ⁾ ∈ (0, η⁽¹⁾) such that the interval [E₀⁽ⁿ⁾, E₀⁽ⁿ⁾ + η⁽ⁿ⁾] is a regime of FM localization for H⁽ⁿ⁾.

Current work:

Extension of these results to interactions with sufficiently fast polynomial decay