MATH 396T TEST 1 SIMS

${\rm SPRING}\ 2020$

Name	
I.D. Number	

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

SPRING 2020

Directions: Show all work. You may use any result proven in class, or homework problem, but you must state the results you are using precisely.

(1) a) Let $f : \mathbb{R} \to \mathbb{C}$ be a function whose real and imaginary parts are differentiable. Let $g : \mathbb{R} \to \mathbb{R}$ also be a differentiable function. Show that the chain rule holds, i.e. let $h : \mathbb{R} \to \mathbb{C}$ be the function $h(x) = (f \circ g)(x) = f(g(x))$, and show that

$$h'(x) = f'(g(x))g'(x)$$
 for all $x \in \mathbb{R}$.

b) Use the above to calculate the derivative of

$$f(x) = e^{2i\cos(x)}$$

•

3

SIMS

(2) Consider the complex number

$$z = e^{3-2i}$$

Let $w = e^z$.

a) Find $\operatorname{Re}[w]$.

b) Find $\operatorname{Im}[w]$.

c) Find |w|.

(3) For any arithmetic function f with period $q \in \mathbb{N}$, define

$$||f||_1 = \sum_{n=1}^q |f(n)|.$$

Show that if f and g are arithmetic functions, both with period $q \in \mathbb{N}$, then

$$||f * g||_1 \le ||f||_1 ||g||_1$$

Here f * g is the convolution of f and g.

4

$$f(0) = -1$$
, $f(1) = a$, $f(2) = 1$, and $f(3) = -a$.

i) Evaluate all four values of $e(-\frac{n}{4})$ with n = 0, 1, 2, 3. (Recall that our convention is that $e(x) = e^{2\pi i x}$ for all $x \in \mathbb{R}$.)

ii) Find the Discrete Fourier Transform of the function f described above, i.e. find $\hat{f}(k)$ for all $k \in \mathbb{Z}$. Use your results in part i) to simplify these expressions.

SIMS