MATH 396T
 TEST 1
 SIMS

SPRING 2020

Name	
I.D. Number	

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

Directions: Show all work. You may use any result proven in class, or homework problem, but you must state the results you are using precisely.
(1) a) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a function whose real and imaginary parts are differentiable. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ also be a differentiable function. Show that the chain rule holds, i.e. let $h: \mathbb{R} \rightarrow \mathbb{C}$ be the function $h(x)=(f \circ g)(x)=f(g(x))$, and show that $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \quad$ for all $x \in \mathbb{R}$.
b) Use the above to calculate the derivative of

$$
f(x)=e^{2 i \cos (x)} .
$$

(2) Consider the complex number

$$
z=e^{3-2 i}
$$

Let $w=e^{z}$.
a) Find $\operatorname{Re}[w]$.
b) Find $\operatorname{Im}[w]$.
c) Find $|w|$.
(3) For any arithmetic function f with period $q \in \mathbb{N}$, define

$$
\|f\|_{1}=\sum_{n=1}^{q}|f(n)| .
$$

Show that if f and g are arithmetic functions, both with period $q \in \mathbb{N}$, then

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}
$$

Here $f * g$ is the convolution of f and g.
(4) Let $a \in \mathbb{C}$. Consider the arithmetic function f with period 4 satisfying

$$
f(0)=-1, \quad f(1)=a, \quad f(2)=1, \quad \text { and } \quad f(3)=-a .
$$

i) Evaluate all four values of $e\left(-\frac{n}{4}\right)$ with $n=0,1,2,3$. (Recall that our convention is that $e(x)=e^{2 \pi i x}$ for all $x \in \mathbb{R}$.)
ii) Find the Discrete Fourier Transform of the function f described above, i.e. find $\hat{f}(k)$ for all $k \in \mathbb{Z}$. Use your results in part i) to simplify these expressions.

