MATH 425A SOME BASIC AXIOMS AND THEIR CONSEQUENCES

FALL 2019

The foundation of analysis is the set of real numbers. We will denote by \mathbb{R} this set of real numbers, i.e.

$$\mathbb{R} = \{x \mid x \text{ is real}\}$$

For real numbers there are two basic operations: addition and multiplication. A notation for these operations is introduced as follows:

To each pair of real numbers x and y, there is a unique real number, which we denote by x+y, and refer to as the *sum* of x and y. This operation defines addition.

To each pair of real numbers x and y, there is a unique real number, which we denote by xy, and refer to as the *product* of x and y. This operation defines multiplication.

The set of real numbers $\mathbb R$ equipped with these two operations satisfy the field axioms. They are:

Axiom 1 (Field Axioms). Let \mathbb{R} be the set of real numbers.

• Commutativity of Addition: For any $x, y \in \mathbb{R}$,

 $x + y = y + x \,.$

• Associativity of Addition: For any $x, y, z \in \mathbb{R}$,

(x+y) + z = x + (y+z).

• The Additive Identity: There is a real number, denoted by $0 \in \mathbb{R}$, for which

$$0 + x = x + 0 = x$$
 for all $x \in \mathbb{R}$.

• The Additive Inverse: For each real number $x \in \mathbb{R}$ there is a real number $y \in \mathbb{R}$ for which

$$x + y = 0.$$

• Commutativity of Multiplication: For any $x, y \in \mathbb{R}$,

$$xy = yx$$

• Associativity of Multiplication: For any $x, y, z \in \mathbb{R}$,

$$(xy)z = x(yz) \,.$$

• The Multiplicative Identity: There is a real number, denoted by $1 \in \mathbb{R}$, for which

$$1x = x1 = x$$
 for all $x \in \mathbb{R}$.

• The Multiplicative Inverse: For each real number $x \neq 0$, there is a real number $y \in \mathbb{R}$ for which

$$xy = 1$$
.

• The Distributive Property: For any $x, y, z \in \mathbb{R}$,

$$x(y+z) = xy + xz \,.$$

• Nontriviality:

$$1 \neq 0$$
.

Consequences of the Field Axioms:

- The additive identity, labeled 0 above, is unique.
- For any $x \in \mathbb{R}$,

$$0x = x0 = 0$$

- For any $x, y \in \mathbb{R}$, if xy = 0, then either x = 0 or y = 0 (both is allowed).
- For any $a \in \mathbb{R}$, there is a unique solution of the equation

$$a + x = 0$$

The solution, which we denote by x = -a, is the additive inverse of a.

• For any $x, y \in \mathbb{R}$, the difference of x and y, which we denote by x - y is defined by

$$x - y = x + (-y)$$

This is how *subtraction* is defined.

• For any $a \in \mathbb{R}$, one has that

$$-(-a) = a$$

- The multiplicative identity, labeled 1 above, is unique.
- For any $a \in \mathbb{R} \setminus \{0\}$, there is a unique solution of the equation

$$ax = 1$$

The solution, which we denote by $x = a^{-1} = \frac{1}{a}$, is the multiplicative inverse of a (also called the reciprocal of a).

• For any $x, y \in \mathbb{R}$ with $y \neq 0$, the quotient of x and y, which we denote by x/y (or $\frac{x}{y}$) is defined by

$$\frac{x}{y} = xy^{-1}$$

 $\mathbf{2}$

This is how *division* is defined.

• For any $a \in \mathbb{R} \setminus \{0\}$, one has that

$$(a^{-1})^{-1} = a$$

• For any $a \in \mathbb{R} \setminus \{0\}$, one has that

$$(-a)^{-1} = -a^{-1}$$

• By induction, one can prove: Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. For any $x_1, x_2, \cdots, x_n \in \mathbb{R}$,

$$a\sum_{k=1}^{n} x_k = \sum_{k=1}^{n} a x_k$$

Axiom 2 (Positivity Axioms). There is a subset of \mathbb{R} , denoted by \mathcal{P} , called the set of positive numbers for which:

- If x and y are positive, then x + y and xy are both positive.
- For each x ∈ ℝ, exactly one of the following 3 alternatives is true:
 (1) x ∈ P,
 - $(2) -x \in \mathcal{P},$
 - (3) x = 0.

Consequences of the Positivity Axioms:

• Let $x, y \in \mathbb{R}$. We write x > y if and only if x - y is positive. If x > y we say that x is strictly greater than y. We write $x \ge y$ if and only if x > y or x = y. If $x \ge y$ we say that x is greater than or equal to y.

• Let $x, y \in \mathbb{R}$. We write x < y if and only if y > x. If x < y we say x is strictly less than y. We write $x \leq y$ if and only if x < y or x = y. If $x \leq y$ we say that x is less that or equal to y.

• For any $a \in \mathbb{R} \setminus \{0\}$, one has that

$$a^2 > 0$$

Since $1 \neq 0$, an application of this to a = 1 shows that 1 > 0.

• For any a > 0, one has that

$$a^{-1} > 0$$

• Let $x, y \in \mathbb{R}$ with $x \leq y$. For any $c \in \mathbb{R}$,

$$x+c \leq y+c$$
.

If the assumed inequality is strict, the resulting inequality is strict as well.

• Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$ with $x_1 \leq y_1$ and $x_2 \leq y_2$. Then,

$$x_1 + x_2 \le y_1 + y_2$$
 .

If either of the assumed inequalities is strict, then the resulting inequality is strict as well.

An immediate consequence of the above is the following.

• Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$ with $x_1 \leq y_1$ and $x_2 \geq y_2$. Then,

$$x_1 - x_2 \le y_1 - y_2$$
.

If either of the assumed inequalities is strict, then the resulting inequality is strict as well.

• If x > y, then

$$xc > yc$$
 if $c > 0$

and

$$xc < yc$$
 if $c < 0$

• By induction, one can prove: For any $n \in \mathbb{N}$, let x_1, x_2, \dots, x_n be nonnegative numbers, i.e. $x_k \ge 0$ for all $k \in \{1, \dots, n\}$.

One has that the sum of non-negative numbers is non-negative, i.e.

$$\sum_{k=1}^{n} x_k \ge 0$$

and moreover,

$$\sum_{k=1}^{n} x_k = 0 \text{ if and only if } x_1 = x_2 = \dots = x_n = 0.$$

One has that the product of non-negative numbers is non-negative, i.e.

 $x_1 x_2 \cdots x_n \ge 0$

and moreover,

 $x_1x_2\cdots x_n = 0$ if and only if there is some $k \in \{1, \cdots, n\}$ for which $x_k = 0$.

Chains of Inequalities:

It is sometimes useful to make statements involving multiple inequalities. A valid chain of inequalities (with two links) is a statement of the form: Let $x, y, z \in \mathbb{R}$.

We write

$$x \le y \le z$$
 if and only if $x \le y$ and $y \le z$

In the case above, one checks that $x \leq z$.

We write

$$x \leq y < z$$
 if and only if $x \leq y$ and $y < z$

In the case above, one checks that x < z.

4

We write

 $x < y \le z$ if and only if x < y and $y \le z$

In the case above, one checks that x < z.

More valid chains of inequalities are:

 $x \ge y \ge z, x \ge y > z$, and $x > y \ge z$.

They are defined and have consequences similar to the above statements. These are the only valid chains of inequalities with two links. No other combination has a logical interpretation.

One can extend this notion to chains of inequalities with more than two links. The only valid chains are those for which:

- all linking inequalities are either \geq or >.
- all linking inequalities are either \leq or <.

No other combinations have a logical interpretation.