MATH 425A
 SOME BASIC AXIOMS AND THEIR CONSEQUENCES

FALL 2019

The foundation of analysis is the set of real numbers.
We will denote by \mathbb{R} this set of real numbers, i.e.

$$
\mathbb{R}=\{x \mid x \text { is real }\}
$$

For real numbers there are two basic operations: addition and multiplication. A notation for these operations is introduced as follows:

To each pair of real numbers x and y, there is a unique real number, which we denote by $x+y$, and refer to as the sum of x and y. This operation defines addition.

To each pair of real numbers x and y, there is a unique real number, which we denote by $x y$, and refer to as the product of x and y. This operation defines multiplication.

The set of real numbers \mathbb{R} equipped with these two operations satisfy the field axioms. They are:

Axiom 1 (Field Axioms). Let \mathbb{R} be the set of real numbers.

- Commutativity of Addition: For any $x, y \in \mathbb{R}$,

$$
x+y=y+x
$$

- Associativity of Addition: For any $x, y, z \in \mathbb{R}$,

$$
(x+y)+z=x+(y+z) .
$$

- The Additive Identity: There is a real number, denoted by $0 \in \mathbb{R}$, for which

$$
0+x=x+0=x \quad \text { for all } x \in \mathbb{R}
$$

- The Additive Inverse: For each real number $x \in \mathbb{R}$ there is a real number $y \in \mathbb{R}$ for which

$$
x+y=0
$$

- Commutativity of Multiplication: For any $x, y \in \mathbb{R}$,

$$
x y=y x
$$

- Associativity of Multiplication: For any $x, y, z \in \mathbb{R}$,

$$
(x y) z=x(y z)
$$

- The Multiplicative Identity: There is a real number, denoted by $1 \in \mathbb{R}$, for which

$$
1 x=x 1=x \quad \text { for all } x \in \mathbb{R} .
$$

- The Multiplicative Inverse: For each real number $x \neq 0$, there is a real number $y \in \mathbb{R}$ for which

$$
x y=1 .
$$

- The Distributive Property: For any $x, y, z \in \mathbb{R}$,

$$
x(y+z)=x y+x z .
$$

- Nontriviality:

$$
1 \neq 0 .
$$

Consequences of the Field Axioms:

- The additive identity, labeled 0 above, is unique.
- For any $x \in \mathbb{R}$,

$$
0 x=x 0=0
$$

- For any $x, y \in \mathbb{R}$, if $x y=0$, then either $x=0$ or $y=0$ (both is allowed).
- For any $a \in \mathbb{R}$, there is a unique solution of the equation

$$
a+x=0
$$

The solution, which we denote by $x=-a$, is the additive inverse of a.

- For any $x, y \in \mathbb{R}$, the difference of x and y, which we denote by $x-y$ is defined by

$$
x-y=x+(-y)
$$

This is how subtraction is defined.

- For any $a \in \mathbb{R}$, one has that

$$
-(-a)=a
$$

- The multiplicative identity, labeled 1 above, is unique.
- For any $a \in \mathbb{R} \backslash\{0\}$, there is a unique solution of the equation

$$
a x=1
$$

The solution, which we denote by $x=a^{-1}=\frac{1}{a}$, is the multiplicative inverse of a (also called the reciprocal of a).

- For any $x, y \in \mathbb{R}$ with $y \neq 0$, the quotient of x and y, which we denote by x / y (or $\frac{x}{y}$) is defined by

$$
\frac{x}{y}=x y^{-1}
$$

This is how division is defined.

- For any $a \in \mathbb{R} \backslash\{0\}$, one has that

$$
\left(a^{-1}\right)^{-1}=a
$$

- For any $a \in \mathbb{R} \backslash\{0\}$, one has that

$$
(-a)^{-1}=-a^{-1}
$$

- By induction, one can prove: Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. For any $x_{1}, x_{2}, \cdots, x_{n} \in$ \mathbb{R},

$$
a \sum_{k=1}^{n} x_{k}=\sum_{k=1}^{n} a x_{k}
$$

Axiom 2 (Positivity Axioms). There is a subset of \mathbb{R}, denoted by \mathcal{P}, called the set of positive numbers for which:

- If x and y are positive, then $x+y$ and $x y$ are both positive.
- For each $x \in \mathbb{R}$, exactly one of the following 3 alternatives is true:
(1) $x \in \mathcal{P}$,
(2) $-x \in \mathcal{P}$,
(3) $x=0$.

Consequences of the Positivity Axioms:

- Let $x, y \in \mathbb{R}$. We write $x>y$ if and only if $x-y$ is positive. If $x>y$ we say that x is strictly greater than y. We write $x \geq y$ if and only if $x>y$ or $x=y$. If $x \geq y$ we say that x is greater than or equal to y.
- Let $x, y \in \mathbb{R}$. We write $x<y$ if and only if $y>x$. If $x<y$ we say x is strictly less than y. We write $x \leq y$ if and only if $x<y$ or $x=y$. If $x \leq y$ we say that x is less that or equal to y.
- For any $a \in \mathbb{R} \backslash\{0\}$, one has that

$$
a^{2}>0
$$

Since $1 \neq 0$, an application of this to $a=1$ shows that $1>0$.

- For any $a>0$, one has that

$$
a^{-1}>0
$$

- Let $x, y \in \mathbb{R}$ with $x \leq y$. For any $c \in \mathbb{R}$,

$$
x+c \leq y+c .
$$

If the assumed inequality is strict, the resulting inequality is strict as well.

- Let $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$ with $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$. Then,

$$
x_{1}+x_{2} \leq y_{1}+y_{2} .
$$

If either of the assumed inequalities is strict, then the resulting inequality is strict as well.

An immediate consequence of the above is the following.

- Let $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$ with $x_{1} \leq y_{1}$ and $x_{2} \geq y_{2}$. Then,

$$
x_{1}-x_{2} \leq y_{1}-y_{2} .
$$

If either of the assumed inequalities is strict, then the resulting inequality is strict as well.

- If $x>y$, then

$$
x c>y c \quad \text { if } c>0
$$

and

$$
x c<y c \quad \text { if } c<0
$$

- By induction, one can prove: For any $n \in \mathbb{N}$, let $x_{1}, x_{2}, \cdots, x_{n}$ be nonnegative numbers, i.e. $x_{k} \geq 0$ for all $k \in\{1, \cdots, n\}$.
One has that the sum of non-negative numbers is non-negative, i.e.

$$
\sum_{k=1}^{n} x_{k} \geq 0
$$

and moreover,

$$
\sum_{k=1}^{n} x_{k}=0 \quad \text { if and only if } \quad x_{1}=x_{2}=\cdots=x_{n}=0
$$

One has that the product of non-negative numbers is non-negative, i.e.

$$
x_{1} x_{2} \cdots x_{n} \geq 0
$$

and moreover,
$x_{1} x_{2} \cdots x_{n}=0 \quad$ if and only if there is some $k \in\{1, \cdots, n\}$ for which $x_{k}=0$.

Chains of Inequalities:

It is sometimes useful to make statements involving multiple inequalities. A valid chain of inequalities (with two links) is a statement of the form:
Let $x, y, z \in \mathbb{R}$.
We write

$$
x \leq y \leq z \quad \text { if and only if } \quad x \leq y \quad \text { and } \quad y \leq z
$$

In the case above, one checks that $x \leq z$.
We write

$$
x \leq y<z \quad \text { if and only if } \quad x \leq y \text { and } y<z
$$

In the case above, one checks that $x<z$.

We write

$$
x<y \leq z \quad \text { if and only if } x<y \text { and } y \leq z
$$

In the case above, one checks that $x<z$.
More valid chains of inequalities are:
$x \geq y \geq z, x \geq y>z$, and $x>y \geq z$.
They are defined and have consequences similar to the above statements. These are the only valid chains of inequalities with two links. No other combination has a logical interpretation.

One can extend this notion to chains of inequalities with more than two links. The only valid chains are those for which:

- all linking inequalities are either \geq or $>$.
- all linking inequalities are either \leq or $<$.

No other combinations have a logical interpretation.

