MATH 425A
 EXAM 1

FALL 2019

Show all work. You may use any result proven in class, or homework problem, but you must state the results you are using precisely.
(1) Let $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. Show that if $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$, then

$$
x_{1}+x_{2} \leq y_{1}+y_{2}
$$

Show also that if one of the assumed inequalities is strict, then the conclusion holds with a strict inequality.
(2) Use induction to prove the following: Let $a \geq 0$. For any $n \in \mathbb{N}$, show that

$$
(1+a)^{n} \geq 1+n a+\frac{n(n-1)}{2} a^{2}
$$

(3) Define a sequence recursively by setting $x_{1}=1$ and then for any $n \in \mathbb{N}$ taking

$$
x_{n+1}=\frac{4+x_{n}}{5+x_{n}}
$$

a) Show that x_{n} is positive for all $n \in \mathbb{N}$.
b) Show that $\left\{x_{n}\right\}$ is monotonically decreasing.
c) Calculate

$$
\lim _{n \rightarrow \infty} x_{n}
$$

(4) a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Suppose that $f(x)=0$ for all rational real numbers x. Prove that $f(x)=0$ for all real x.
b) Let $a>0$. Suppose $f:[-a, a] \rightarrow \mathbb{R}$ is continuous. Suppose further that

$$
f(-a)>-a \quad \text { and } \quad f(a)<a .
$$

Show that there is $x \in(-a, a)$ for which $f(x)=x$.

