MATH 425A EXAM 1

FALL 2019

Show all work. You may use any result proven in class, or homework problem, but you must state the results you are using precisely.

(1) Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Show that if $x_1 \leq y_1$ and $x_2 \leq y_2$, then

 $x_1 + x_2 \le y_1 + y_2$

Show also that if one of the assumed inequalities is strict, then the conclusion holds with a strict inequality.

FALL 2019

(2) Use induction to prove the following: Let $a \ge 0$. For any $n \in \mathbb{N}$, show that

$$(1+a)^n \ge 1 + na + \frac{n(n-1)}{2}a^2$$

 $\mathbf{2}$

MATH 425A

(3) Define a sequence recursively by setting $x_1 = 1$ and then for any $n \in \mathbb{N}$ taking

$$x_{n+1} = \frac{4+x_n}{5+x_n} \,.$$

- a) Show that x_n is positive for all $n \in \mathbb{N}$.
- b) Show that $\{x_n\}$ is monotonically decreasing.
- c) Calculate

 $\lim_{n \to \infty} x_n$

FALL 2019

4

(4) a) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that f(x) = 0 for all rational real numbers x. Prove that f(x) = 0 for all real x.

b) Let a > 0. Suppose $f : [-a, a] \to \mathbb{R}$ is continuous. Suppose further that

 $f(-a) > -a \quad \text{and} \quad f(a) < a \,.$ Show that there is $x \in (-a,a)$ for which f(x) = x.