MATH 464
 EXAMPLES OF COMMON DISCRETE RANDOM VARIABLES

SPRING 2016

The following is a list of common discrete random variables.
(1) The Bernoulli Random Variable: Let $0 \leq p \leq 1$. We say that X is a Bernoulli random variable if the range of X is $\{0,1\}$ and

$$
P(X=1)=p \quad \text { and } \quad P(X=0)=1-p .
$$

Sometimes we say thas this is a one parameter Bernoulli random variable with parameter p. It is common to denote by $q=1-p$. In this case, the associated probability mass function is simple:

$$
f_{X}(x)= \begin{cases}p & \text { if } x=1 \\ q=1-p & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

One often thinks of Bernoulli random variables as corresponding to the experiment of flipping a coin. Typically, one takes X to be the function which assigns the value 1 to heads and 0 to tails.

In this case, the mean and variance of X are given by

$$
\mu=E(X)=p \quad \text { while } \quad \sigma^{2}=\operatorname{var}(X)=p(1-p)
$$

Moreover, the moment generating function associated to X is given by

$$
M_{X}(t)=p e^{t}+(1-p)
$$

and it is defined for all $t \in \mathbb{R}$.
(2) The Binomial Random Variable: Let $0 \leq p \leq 1$ and n be a positive integer. We say that X is a Binomial random variable if the range of X is $\{0,1,2,3, \cdots, n\}$ and

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for any } 0 \leq k \leq n
$$

One often thinks of Binomial random variables as corresponding to the experiment of flipping an unfair coin n times. In this case, p is the probability of heads on a single flip, and X is the number of heads we get in n flips. The parameter n is often called the number of trials.

In this case, the mean and variance of X are given by

$$
\mu=E(X)=n p \quad \text { while } \quad \sigma^{2}=\operatorname{var}(X)=n p(1-p)
$$

Moreover, the moment generating function associated to X is given by

$$
M_{X}(t)=\left[p e^{t}+(1-p)\right]^{n}
$$

and it is defined for all $t \in \mathbb{R}$.
Note that the Bernoulli random variable with parameter p is the simplest case of the binomial random variable with $n=1$ and $p=p$, see above. In fact, any binomial random variable can be thought of as a sum of n independent Bernoulli trials.
(3) The Geometric Random Variable: Let $0<p \leq 1$ be given. We say that X is a Geometric random variable if the range of X is $\{1,2,3, \cdots\}$ and

$$
P(X=k)=p(1-p)^{k-1} \quad \text { for any integer } k \geq 1
$$

One often thinks of the Geometric random variable as corresponding to the experiment where you flip an unfair coin until you get heads. Here p is the probability of getting heads and $X=k$ corresponds to the event that you got heads in k flips; the flip of heads being counted. Caution: Some books use a different convention and take X to be the number of tails before we get the first heads . . .

In this case, the mean and variance of X are given by

$$
\mu=E(X)=\frac{1}{p} \quad \text { while } \quad \sigma^{2}=\operatorname{var}(X)=\frac{1-p}{p^{2}}
$$

Moreover, the moment generating function associated to X is given by

$$
M_{X}(t)=\frac{p e^{t}}{1-(1-p) e^{t}}
$$

and it is defined for all $t \in \mathbb{R}$ for which $(1-p) e^{t}<1$.
(4) The Poisson Random Variable: Let $\lambda>0$ be given. We say that X is a Poisson random variable if the range of X is $\{0,1,2,3, \cdots\}$ and

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \quad \text { for any integer } k \geq 0
$$

There is no simple experiment that produces a Poisson random variable, but it comes up often in applications. It is, for example, a limiting case of the Binomial random variable.

In this case, the mean and variance of X are given by

$$
\mu=E(X)=\lambda \quad \text { while } \quad \sigma^{2}=\operatorname{var}(X)=\lambda
$$

Moreover, the moment generating function associated to X is given by

$$
M_{X}(t)=\exp [\lambda(\exp [t]-1)]
$$

and it is defined for all $t \in \mathbb{R}$.
(5) The Negative Binomial Random Variable: Let $0<p \leq 1$ and n be a positive integer. We say that X is a Negative Binomial random variable if the range of X is $\{n, n+1, n+2, \cdots\}$ and

$$
P(X=k)=\binom{k-1}{n-1} p^{n}(1-p)^{k-n} \quad \text { for any } k \geq n
$$

One often thinks of the Negative Binomial random variable as corresponding to the experiment where you flip an unfair coin until you get heads a total of n times. Here p is the probability of heads, and X is the total number of flips it takes (including the n heads).

In this case, the mean and variance of X are given by

$$
\mu=E(X)=\frac{n}{p} \quad \text { while } \quad \sigma^{2}=\operatorname{var}(X)=\frac{n(1-p)}{p^{2}}
$$

Moreover, the moment generating function associated to X is given by

$$
M_{X}(t)=\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{n}
$$

and it is defined for all $t \in \mathbb{R}$ for which $(1-p) e^{t}<1$.

