MATH 464 HOMEWORK 2

SPRING 2016

The following assignment is to be turned in on Thursday, February 4, 2016.

1. Suppose we pick a letter at random from the word MISSISSIPPI. Write down a sample space and give the probability of each outcome?
2. In a group of students, 25% smoke, 60% drink, and 15% do both. What percentage of the students that either smoke or drink?
3. Let (Ω, \mathcal{F}, P) be a probability space. Suppose $A, B \in \mathcal{F}$ with:

$$
P(A)=\frac{1}{3} \quad P\left(A^{c} \cap B^{c}\right)=\frac{1}{2} \quad \text { and } \quad P(A \cap B)=\frac{1}{4}
$$

What is $P(B)$?
4. Let (Ω, \mathcal{F}, P) be a probability space. Suppose $A, B \in \mathcal{F}$ with $P(A)=0.4$ and $P(B)=0.7$. What are the maximum and minimum possible values for $P(A \cap B)$?
5. Let (Ω, \mathcal{F}, P) be a probability space. Let $A, B, C \in \mathcal{F}$. Prove that
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)$.
This is a special case of a more general result called the inclusion-exculsion formula.
6. Alice and Bob take turns flipping a fair coin. The game is: the first one to heads wins. Bob lets Alice flip first. What is the probability that she wins?
7. An unfair coin has probability $1 / 3$ for heads and $2 / 3$ for tails. Do an experiment where you flip this coin until you get heads and then stop. What is the probability it takes exactly 8 flips, given that it takes at least 6 flips?
8. Let (Ω, \mathcal{F}, P) be a probability space. Let $A, B \in \mathcal{F}$ with $P(B)>0$. Prove that

$$
P\left(A^{c} \mid B\right)=1-P(A \mid B)
$$

using the definition of conditional probability measures. Do not use the fact that conditional probabilities define probability measures.
9. Let (Ω, \mathcal{F}, P) be a probability space. Suppose $A, B \in \mathcal{F}$ are independent events. Prove that A^{c} and B^{c} are independent events.
10. Roll a fair, six-sided die twice. Let A be the event that the first roll is odd. Let B be the event that the second roll is even. Let C be the event that either both rolls are even or both rolls are odd. Show that A, B, and C are pairwise independent, but not independent.

