MATH 464 HOMEWORK 4

SPRING 2016

The following assignment is to be turned in on Thursday, February 18, 2016.

1. Consider an experiment where you roll a fair 4 -sided die twice. Let X be the discrete random variable corresponding to the sum of the rolls. Let $Y=X^{2}-4$. Find the pmf's, i.e., f_{X} and f_{Y}.
2. Let $0<p \leq 1$ and consider a function X with range $\{1,2,3, \cdots\}$ and corresponding numbers

$$
P(X=k)=p(1-p)^{k-1} \quad \text { for any integer } k \geq 1
$$

Prove that X is a discrete random variable by showing that the sum of the above probabilities is 1 . This is the geometric random variable with parameter p.
3. Let X be a Poisson random variable with parameter $\lambda>0$. Compute the following:
a) $P(2 \leq X \leq 4)$
b) $P(X \geq 5)$
c) $P(X$ is even $)$
give each answer in exact form and, with the choice of $\lambda=2$, give a decimal approximation to the above which is accurate to 3 decimal places.
4. Let X be a discrete random variable whose range is $\{0,1,2,3, \cdots\}$. Prove that

$$
E(X)=\sum_{k=0}^{\infty} P(X>k)
$$

5. Compute the expected value of the geometric random variable with parameter $0<p \leq 1$. Hint: Use problem 4 above.
6. Let X be a binomial random variable with parameters $0 \leq p \leq 1$ and $n>0$ an integer. For any $0 \leq k \leq n$, denote by $P_{k}=P(X=k)$. Compute
the ratio

$$
\frac{P_{k-1}}{P_{k}} \quad \text { for } 1 \leq k \leq n
$$

Show that this ratio is less than one if and only if $k<n p+p$. This shows that the most probable values of X are those near $n p$.
7. Let X be a Poisson random variable with parameter $\lambda>0$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function $g(x)=x(x-1)$. Set $Y=g(X)$. Find $E(Y)$.
8. Let X be a function whose range is $\{1,2,3, \cdots\}$. Consider the values

$$
P(X=n)=\frac{1}{n(n+1)} \quad \text { for any } n \geq 1
$$

Does this function X define a discrete random variable? If so, what is $E(X)$?

