MATH 464 HOMEWORK 4

SPRING 2016

The following assignment is to be turned in on Thursday, February 18, 2016.

- 1. Consider an experiment where you roll a fair 4-sided die twice. Let X be the discrete random variable corresponding to the sum of the rolls. Let $Y = X^2 4$. Find the pmf's, i.e., f_X and f_Y .
- 2. Let $0 and consider a function X with range <math>\{1,2,3,\cdots\}$ and corresponding numbers

$$P(X = k) = p(1 - p)^{k-1}$$
 for any integer $k \ge 1$.

Prove that X is a discrete random variable by showing that the sum of the above probabilities is 1. This is the geometric random variable with parameter p.

- 3. Let X be a Poisson random variable with parameter $\lambda > 0$. Compute the following:
 - a) $P(2 \le X \le 4)$
 - b) $P(X \ge 5)$
 - c) P(X is even)

give each answer in exact form and, with the choice of $\lambda = 2$, give a decimal approximation to the above which is accurate to 3 decimal places.

4. Let X be a discrete random variable whose range is $\{0, 1, 2, 3, \dots\}$. Prove that

$$E(X) = \sum_{k=0}^{\infty} P(X > k).$$

- 5. Compute the expected value of the geometric random variable with parameter 0 .**Hint:**Use problem 4 above.
- 6. Let X be a binomial random variable with parameters $0 \le p \le 1$ and n > 0 an integer. For any $0 \le k \le n$, denote by $P_k = P(X = k)$. Compute

2

the ratio

$$\frac{P_{k-1}}{P_k} \quad \text{for } 1 \le k \le n \,.$$

Show that this ratio is less than one if and only if k < np + p. This shows that the most probable values of X are those near np.

- 7. Let X be a Poisson random variable with parameter $\lambda > 0$. Let $g : \mathbb{R} \to \mathbb{R}$ be the function g(x) = x(x-1). Set Y = g(X). Find E(Y).
- 8. Let X be a function whose range is $\{1,2,3,\cdots\}$. Consider the values

$$P(X = n) = \frac{1}{n(n+1)} \quad \text{for any } n \ge 1.$$

Does this function X define a discrete random variable? If so, what is E(X)?