MATH 464
 HOMEWORK 5

SPRING 2016

The following assignment is to be turned in on Thursday, February 25, 2016.

1. Let $x, y \in \mathbb{R}$ and take $n \geq 2$ an integer. Prove that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

using an induction argument.
2. Let X be a binomial random variable with parameters n and p. Find the mean and variance of X. Hint: Sometimes it is easier to calculate $E(X(X-1))=E\left(X^{2}\right)-E(X)$ rather than $E\left(X^{2}\right)$ directly.
3. Let X be a geometric random variable with parameter $p>0$. Find the mean and variance of X. Hint: By geometric series, we know that

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r} \quad \text { for any real number } \mathrm{r} \text { with }|r|<1
$$

By taking derivatives, you can get some useful formulas:

$$
\sum_{n=1}^{\infty} n r^{n-1}=\frac{d}{d r} \frac{1}{1-r} \quad \text { and } \quad \sum_{n=2}^{\infty} n(n-1) r^{n-2}=\frac{d^{2}}{d r^{2}} \frac{1}{1-r}
$$

4. a) Let X be a discrete random variable. Show that if $E\left(X^{2}\right)=0$, then $P(X=0)=1$.
b) Use part a) to prove that if X is a discrete random variable and $\operatorname{var}(X)=$ 0 , then $P(X=\mu)=1$ where $\mu=E(X)$.
5. Let X be a geometric random variable with parameter $p>0$. Let m and n be non-negative integers. Show that

$$
P(X>n+m \mid X>m)=P(X>n)
$$

This shows that X has the lack of memory property.

