MATH 464 HOMEWORK 7

SPRING 2016

The following assignment is to be turned in on Thursday, March 31, 2016.

1. Consider the following experiment: Roll 2 fair, four sided dice. Consider the following discrete random variables:
$X=$ the number of odd dice.
$Y=$ the number of even dice.
$Z=$ the number of dice showing a 3 or a 4 .
Clearly, each of X, Y, and Z have range $\{0,1,2\}$.
a) Find $f_{X, Y}(x, y)$. Give your answer in tabular form.
b) Determine whether or not X and Y are independent.
c) Find $E(X Y)$.
d) Repeat exercises a) - c) above for the random variables Y and Z.
2. Suppose that X and Y are discrete random variables and that you know the joint probability mass function of X and Y is:

$$
f_{X, Y}(x, y)=\alpha^{x+y+1} \quad \text { for } x, y=0,1,2 \quad \text { with some } \alpha>0
$$

Find $E(X Y)$ and $E(Y)$.
3. Let X and Y be independent discrete random variables. Suppose we know that

$$
E(X)=-2, \quad E\left(X^{2}\right)=5, \quad E\left(X^{3}\right)=10, \quad \text { and } \quad E\left(X^{4}\right)=50
$$

and

$$
E(Y)=-1, \quad E\left(Y^{2}\right)=5, \quad E\left(Y^{3}\right)=-13, \quad \text { and } \quad E\left(Y^{4}\right)=73
$$

a) Let $Z=2 X+Y$. Find the mean and variance of Z.
b) Let $W=Y^{2}-2 Y X^{2}$. Find the mean and variance of W.
4. Let X and Y be independent discrete random variables. Suppose X is a Poisson random variable with parameter $\lambda>0$ and Y is a Poisson random variable with parameter $\mu>0$. Show that the random variable $Z=X+Y$ is also a Poisson random variable and determine its parameter. Hint: You
may want to use the formula:

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \quad \text { for any integer } n \geq 1 \quad \text { and real number } x .
$$

5. Suppose you have an unfair coin with probability p for heads. Consider the following 2 stage experiment: First, flip the coin until you get a heads. Then, flip the coin again until you get a tails. Let X be the discrete random variable counting the total number of flips in this 2 stage experiment.
a) Find the mean and variance of X. Hint: It may be useful to write X as the sum of 2 random variables. If you do, label and describe carefully each of these random variables.
b) Let Y be the number of heads minus the number of tails in this 2 stage experiment. Find the mean and variance of Y.
6. Let X and Y be independent discrete random variables. Suppose that each of them is geometric and that you know $E(X)=2$ and $E(Y)=3$.
a) Find the joint probability mass function of X and Y.
b) Find the probability that $X+Y \leq 4$.
c) Consider $W=\min \{X, Y\}$ and $Z=\max \{X, Y\}$. Find the joint probability mass function of W and Z.
7. Let $X_{1}, X_{2}, \cdots, X_{100}$ be independent discrete random variables. Suppose that each of them is a Poisson random variable with $\lambda=2$. Consider

$$
\bar{X}=\frac{1}{100} \sum_{j=1}^{100} X_{j}
$$

which is sometimes called the sample mean. Find the mean and variance of \bar{X}.
8. Suppose you have an unfair coin with probability p for heads. Do an experiment where you flip this coin N times, and let N be a random number which is Poisson with parameter $\lambda>0$. Assume that N is independent of the outcomes of the flips. Let X be the number of heads. Let Y be the number of tails. Find the probability mass functions for X and Y and use your result to show that X and Y are independent.

