MATH 464 HOMEWORK 9

SPRING 2016

The following assignment is to be turned in on Thursday, April 28, 2016.

1. Let X be a normal random variable with parameters $\mu \in \mathbb{R}$ and $\sigma>0$. Find the cdf and pdf for Z the standardization of X.
2. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent, identically distributed (i.i.d) random variables. Let μ and σ^{2} be the common mean and variance respectively. Define

$$
Y=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\bar{X}_{n}\right)^{2} \quad \text { where } \quad \bar{X}_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}
$$

Find the mean of Y in terms of n, μ, and σ^{2}.
3. Flip a fair coin until you get 100 heads. Use the central limit theorem to find (approximately) the probabilities it takes at least 200, 250, and 300 flips. Hint: Let X be the number of flips to get 100 heads. Write X as the sum of 100 i.i.d. random variables.
4. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent random variables each having the standard normal distribution.
a) Find (approximately)

$$
P\left(80 \leq \sum_{j=1}^{100} X_{j}^{2} \leq 120\right)
$$

b) Find c so that

$$
P\left(\left|\sum_{j=1}^{100} X_{j}^{2}-100\right|<c\right)=0.95
$$

