
1. Some Basics from Linear Algebra

First and foremost, I will assume that you are familiar with many basic facts about real and
complex numbers. In particular, both R and C are fields; they satisfy the field axioms. For
z = x+ iy 2 C, the modulus, i.e. |z| =

p
x2 + y2 � 0, represents the distance from z to the origin

in the complex plane. (As such, it coincides with the absolute value for real z.) For z = x+ iy 2 C,
complex conjugation, i.e. z = x � iy, represents reflection about the x-axis in the complex plane.
It will also be important that both R and C are complete, as metric spaces, when equipped with
the metric d(z, w) = |z � w|; more on this below.

1.1. Vector Spaces. One of the most important preliminary notions for this course is that of a
vector space. Although vector spaces can be defined over any field, we will restrict our attention
to fields F 2 {R,C}. In fact, quite often F = C will be the field of choice.

The following definition is fundamental.

Definition 1.1. Let F be a field. A vector space V over F is a non-empty set V (the elements
of V are called vectors) over a field F (the elements of F are called scalars) equipped with two
operations:
i) To each pair u, v 2 V , there exists a unique element u+ v 2 V . This operation is called vector
addition.
ii) To each u 2 V and ↵ 2 F, there exists a unique element ↵u 2 V . This operation is called scalar
multiplication.
These operations satisfy the following relations:
For all ↵,� 2 F and all u, v, w 2 V ,

(1) u+ (v + w) = (u+ v) + w and u+ v = v + u
(2) There is a vector 0 2 V (called the additive identity) such that u+ 0 = u for all u 2 V
(3) For each vector u 2 V , there is a vector �u 2 V (called the additive inverse of u) such

that u+ (�u) = 0
(4) ↵(u+ v) = ↵u+ ↵v
(5) (↵+ �)u = ↵u+ �u
(6) (↵�)u = ↵(�u)
(7) 1u = u for all u 2 V

The phrase “Let V be a complex (or real) vector space.” means that V is a vector space over
F = C (or F = R). It is clear that every complex vector space is a real vector space.

Example 1 (Vectors). Let F be a field and n � 1 be an integer. Take

V = {(v1, v2, · · · , vn)t : vj 2 F for all 1  j  n}

The set V is often called the collection of n-tuples with entries in F, and some write V = Fn. Here
the super script t indicated that I think of these n-tuples as columns; not rows. With the usual
notions of addition and scalar multiplication, i.e. for v, w 2 V and � 2 F, set

v + w = (v1 + w1, v2 + w2, · · · , vn + wn)
t and �v = (�v1,�v2, · · · ,�vn)t

V is a vector space over F.

Example 2 (Matrices). Let F be a field and take integers m,n � 1. Take

V = {A = {aij} : aij 2 F for all 1  i  m and 1  j  n}
1
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The set V is often called the collection of m ⇥ n matrices with entries in F, and some write
V = Fm⇥n. Here we often visualize A as a matrix with m rows and n columns, i.e.

A =

0

BBB@

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn

1

CCCA

With the usual notions of addition and scalar multiplication, i.e. for A,B 2 V and � 2 F, set
A+B = {cij} with cij = aij + bij for all 1  i  m and 1  j  n and �A = {�aij}

V is a vector space over F.
One can argue that Example 2 is a special case of Example 1, however, it is often useful to think

of these as two distinct examples . . .

Example 3 (Functions). Let I ⇢ R be an interval. Consider the set

V = {f : f : I ! F}
The set V is often called the collection of F-valued functions on I, and some write V = F(I,F).
With the usual notions of addition and scalar multiplication, i.e. for f, g 2 V and � 2 F, set

(f + g)(x) = f(x) + g(x) and (�f)(x) = �f(x) for all x 2 I,

V is a vector space over F.
Definition 1.2. Let V be a vector space over F. A non-empty set U ⇢ V is said to be a subspace of
V if U is a vector space over F when it is equipped with the same addition and scalar multiplication
rules that make V a vector space over F.

To check that a (non-empty) subset U ⇢ V is a subspace, one need only check closure under
addition and scalar multiplication, i.e. u, v 2 U imply u + v 2 U and u 2 U imply �u 2 U for all
� 2 F.

Let V be a vector space over F and n � 1 be an integer. Let v1, v2, · · · , vn 2 V and �1,�2, · · · ,�n 2
F. The vector v 2 V given by

v = �1v1 + �2v2 + · · ·+ �nvn =
nX

i=1

�ivi

is called a linear combination of the vectors v1, v2, · · · , vn.
Definition 1.3. Let V be a vector space over F. Let n � 1 and v1, v2, · · · , vn 2 V . The collection
of all linear combinations of the vectors v1, v2, · · · , vn, regarded as a subset of V , is called the span
of these vectors. Our notation for this it

span(v1, v2, · · · , vn) = {v =
nX

i=1

�ivi : �i 2 F for all 1  i  n}

One readily checks that for any n � 1 and any collection of vectors v1, v2, · · · , vn 2 V ,
span(v1, v2, · · · , vn) ⇢ V is a subspace of V . More generally, if U ⇢ V is non-empty, then the linear
hull L(U) is the set of all (finite) linear combinations of elements of U . One checks that this is the
smallest subspace of V containing U .

Definition 1.4. Let V be a vector space over F. If there is some n � 1 and vectors v1, v2, · · · , vn 2
V for which

span(v1, v2, · · · , vn) = V ,

then V is said to be finite-dimensional. Any collection of vectors for which the above is true is called
a spanning set for V . If V is not finite dimensional, then V is said to be infinite-dimensional.
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Let us return to our examples.
Consider Example 1. The collection of n-tuples {ej} with 1  j  n defined by ej = (0, 0, · · · , 0, 1, 0, · · · , 0)

with the multiplicative identity 1 2 F in the j-th component and the additive identitiy 0 2 F in all
other components is a spanning set for V = Fn. In this case, V is finite-dimensional.

Consider Example 2. The collection of matrices {Eij} defined by fixing 1  i  m and 1  j  n
and declaring that Eij has a 1 in the i, j entry and 0 in all other entries has mn < 1 elements.
One checks that this is a spanning set for V = Fm⇥n, and hence V is finite-dimensional.

Consider Example 3. In general, this vector space is not finite-dimensional. In fact, take F = R
and I = (0, 1). For any n � 1, one can construct n disjoint compact sub-intervals of (0, 1/2). For
each of these sub-intervals, choose a non-zero, function supported in that sub-interval. The span
of these functions will clearly not include any function compactly supported in (1/2, 1).

Definition 1.5. Let V be a vector space over F. A collection of vectors v1, v2, · · · , vn 2 V is said
to be linearly independent if the only solution of the equation

nX

i=1

�ivi = �1v1 + �2v2 + · · ·+ �nvn = 0

with �1,�2, · · · ,�n 2 F is �1 = �2 = · · · = �n = 0.

Definition 1.6. Let V be a finite-dimensional vector space over F. A collection of vectors v1, v2, · · · , vn 2
V is said to be a basis of V if the collection is a linearly independent, spanning set. In other words,
the collection v1, v2, · · · , vn is linearly independent and span(v1, v2, · · · , vn) = V .

One can prove that every finite dimensional vector space has a basis. One can also prove that
for a fixed finite-dimensional vector space V , any two bases have the same number of elements.

Definition 1.7. Let V 6= {0} be a finite-dimensional vector space over F. Denote by dim(V ) the
number of elements in any basis of V . This positive integer is called the dimension of V . By
convention, we take dim({0}) = 0.

Consider Example 1. The collection of n-tuples {ej}, defined previously, is a basis of V = Fn.
As such, dim(Fn) = n.

Consider Example 2. The collection of matrices {Eij}, defined previously, is a basis of V = Fm⇥n.
As such, dim(Fm⇥n) = mn.

1.2. On distance, length, and angles. We will frequently encounter sets equipped with certain
structures. Three important examples follow.

1.2.1. On distance. Some sets are equipped with a function which describes distance. Such a
function is called a metric. More precisely,

Definition 1.8. A metric on a (non-empty) set X is a function ⇢ : X ⇥ X ! [0,1), with
(x, y) 7! ⇢(x, y), which satisfies the following:

(1) ⇢(x, y) = 0 if and only if x = y;
(2) ⇢(x, y) = ⇢(y, x) for all x, y 2 X;
(3) ⇢(x, y)  ⇢(x, z) + ⇢(z, y) for all x, y, z 2 X.

A set X equipped with a metric is called a metric space; this is often written as (X, ⇢).

If (X, ⇢) is a metric space, then ⇢(x, y) is interpreted as the distance between x and y in X.
Note that, in general, a metric space need not have an additive structure. To be clear, given a

metric space (X, ⇢) and two points x, y 2 X, it is not a priori clear that there is a well-defined sum
of x and y, and in particular, a metric space need not be a vector space. What will be important
for us is that, in the context of metric spaces, one can define completeness.
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Definition 1.9. Let (X, ⇢) be a metric space. A sequence {xn}1n=1 in X is said to converge to
x 2 X if limn!1 ⇢(xn, x) = 0. This may be written as xn ! x. A sequence {xn}1n=1 in X is said
to be Cauchy if ⇢(xn, xm) ! 0 as m,n ! 1. The metric space (X, ⇢) is said to be complete if
every Cauchy sequence converges to an element of X.

1.2.2. On length. Some sets are equipped with a function which describes length. Such a function
is called a norm. For this notion, an additive structure is required. More precisely,

Definition 1.10. Let V be a vector space over F. A map: k · k : V ! R, x 7! kxk, is said to be a
norm on V if it satisfies the following properties:

(1) Sub-additivity: For each x, y 2 V ,

kx+ yk  kxk+ kyk.
(2) Positive Homogeneity: For each x 2 V and � 2 F,

k�xk = |�|kxk.
(3) Positive Definiteness: For each x 2 V , kxk � 0 and moreover, kxk = 0 if and only if

x = 0.

V is said to be a normed space if it is a vector space equipped with a norm; this is often written
(V, k · k).

If (V, k · k) is a normed space, then kxk is interpreted as the length of x in X.
One can easily show that every normed space (V, k ·k) is a metric space when V is equipped with

the metric ⇢(x, y) = kx� yk. This leads to an important definition.

Definition 1.11. Let (V, k · k) be a normed space. If the corresponding metric space (V, ⇢), with
⇢(x, y) = kx� yk, is complete, then V is said to be a Banach space.

In some cases, one encounters a function on a vector space which only satisfies sub-additivity
and positive homogeneity. Such functions are called semi-norms. One can check that a semi-norm
is a norm if and only if the semi-norm takes non-zero vectors to non-zero real numbers.

1.2.3. On angles. Some sets are equipped with a function which describes the angle between two
elements. Such functions are called inner products or scalar products.

Definition 1.12. Let V be a vector space over F. A map: h·, ·i : V ⇥ V ! F, (x, y) 7! hx, yi, is
said to be an inner-product on V if it satisfies the following properties:

(1) Second Component Linear: For each x, y, z 2 V and any � 2 F, one has that

hx, y + zi = hx, yi+ hx, zi and hx,�yi = �hx, yi

(2) Conjugate Symmetry: For each x, y 2 V , hx, yi = hy, xi.
(3) Positive Definiteness: For each x 2 V , hx, xi � 0 and moreover, hx, xi = 0 if and only

if x = 0.

V is said to be an inner-product space (or pre-Hilbert Space) if it is a vector space equipped with
an inner-product; this is often written (V, h·, ·i).

In this class, we will mainly deal with complex inner-product spaces.
It is not hard to show that every inner-product space is a normed space. In fact, let (V, h·, ·i) be

an inner-product space. The map k · k : V ! [0,1) with

kxk =
p
hx, xi for each x 2 V ,

is easily checked to be a norm.
In fact, the first step in this proof is the following.
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Theorem 1.13 (Cauchy-Schwarz Inequality). Let (V, h·, ·i) be an inner-product space. For each
x, y 2 V , one has that

|hx, yi|  kxkkyk
where kxk =

p
hx, xi as discussed above.

Given the bound above, it is straight-forward to verify that every inner-product space is a
normed space. As such, by a previous discussion, it is also a metric space. In this case, the notion
of completeness is relevant. For clarity, the metric here is:

⇢(x, y) = kx� yk =
p
hx� y, x� yi for all x, y 2 V

Definition 1.14. Let (V, h·, ·i) be an inner-product space. If (V, ⇢), regarded as a metric space with
metric as described above, is complete, then V is said to be a Hilbert space.

Remark: Not all normed spaces are inner-product spaces. In fact, one can show that the norm
on a normed space (V, k · k) arises from an inner-product if and only if the norm satisfies

kx+ yk2 + kx� yk2 = 2
�
kxk2 + kyk2

�
for all x, y 2 V .

This well-known relation is called the Parallelogram Law.
In words, the above result shows that not all Banach spaces are Hilbert spaces. Examples of

this include L1(R) and C((0, 1)) equipped with k · k1. One can check that every finite dimensional
inner-product space is a Hilbert space.

For a real inner-product space V , given two vectors x, y 2 V \ {0}, the quantity

(1) ✓x,y = cos�1

✓
hx, yi
kxkkyk

◆
2 [0,⇡]

is said to describe the angle between x and y in V .

1.2.4. Some Examples. Consider Example 1. One readily checks that

hx, yi =
nX

i=1

xi · yi

defines an inner-product on V = Cn. In this case, V = Cn is a normed space when equipped with

kxk =

vuut
nX

i=1

|xi|2

Consider Example 2. One readily checks that

hA,BiHS = Tr[A⇤B]

defines an inner-product on V = Cn⇥n. This is called the Hilbert-Schmidt inner product. In this
case, V = Cn⇥n is a normed space when equipped with

kAkHS =
p
Tr[A⇤A]

which is called the Hilbert-Schmidt norm.
Consider Example 2 again. One readily checks that V = Cn⇥n is a normed space when equipped

with

kAk = sup
 2Cn:
 6=0

kA k
k k

This norm is called the operator norm.
Consider Example 3. For any f 2 V , one can define

kfk1 = sup
x2I

|f(x)| .
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One can check that
U = {f 2 V : kfk1 < 1}

is a subspace of V . In fact, one checks that k · k1 is a norm on U .
Consider Example 3 again. For any measurable f 2 V , one can define

kfk2 =

sZ

I
|f(x)|2dx .

One can check that
Ũ = {f 2 V : f is measurable and kfk2 < 1}

is a subspace of V . In fact, one checks that k · k2 is a semi-norm on Ũ . What’s more, one can
further check that k · k2 is the semi-norm induced by the semi-inner-product

hf, gi =
Z

I
f(x) · g(x) dx .

An easy way to make this semi-norm into a norm is to first restrict to continuous functions f 2 V .
In this case, the the semi-inner-product also becomes an inner-product.

Remark: We have to work harder to get a Hilbert space out of k · k2. This requires equivalence
classes of functions which agree almost everywhere. The resulting Hilbert space is denoted by
L2(I).


