1. Some Basics from Linear Algebra

First and foremost, I will assume that you are familiar with many basic facts about real and complex numbers. In particular, both \mathbb{R} and \mathbb{C} are fields; they satisfy the field axioms. For $z=x+i y \in \mathbb{C}$, the modulus, i.e. $|z|=\sqrt{x^{2}+y^{2}} \geq 0$, represents the distance from z to the origin in the complex plane. (As such, it coincides with the absolute value for real z.) For $z=x+i y \in \mathbb{C}$, complex conjugation, i.e. $\bar{z}=x-i y$, represents reflection about the x-axis in the complex plane. It will also be important that both \mathbb{R} and \mathbb{C} are complete, as metric spaces, when equipped with the metric $d(z, w)=|z-w|$; more on this below.
1.1. Vector Spaces. One of the most important preliminary notions for this course is that of a vector space. Although vector spaces can be defined over any field, we will restrict our attention to fields $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. In fact, quite often $\mathbb{F}=\mathbb{C}$ will be the field of choice.

The following definition is fundamental.
Definition 1.1. Let \mathbb{F} be a field. A vector space V over \mathbb{F} is a non-empty set V (the elements of V are called vectors) over a field \mathbb{F} (the elements of \mathbb{F} are called scalars) equipped with two operations:
i) To each pair $u, v \in V$, there exists a unique element $u+v \in V$. This operation is called vector addition.
ii) To each $u \in V$ and $\alpha \in \mathbb{F}$, there exists a unique element $\alpha u \in V$. This operation is called scalar multiplication.
These operations satisfy the following relations:
For all $\alpha, \beta \in \mathbb{F}$ and all $u, v, w \in V$,
(1) $u+(v+w)=(u+v)+w$ and $u+v=v+u$
(2) There is a vector $0 \in V$ (called the additive identity) such that $u+0=u$ for all $u \in V$
(3) For each vector $u \in V$, there is a vector $-u \in V$ (called the additive inverse of u) such that $u+(-u)=0$
(4) $\alpha(u+v)=\alpha u+\alpha v$
(5) $(\alpha+\beta) u=\alpha u+\beta u$
(6) $(\alpha \beta) u=\alpha(\beta u)$
(7) $1 u=u$ for all $u \in V$

The phrase "Let V be a complex (or real) vector space." means that V is a vector space over $\mathbb{F}=\mathbb{C}($ or $\mathbb{F}=\mathbb{R})$. It is clear that every complex vector space is a real vector space.

Example 1 (Vectors). Let \mathbb{F} be a field and $n \geq 1$ be an integer. Take

$$
V=\left\{\left(v_{1}, v_{2}, \cdots, v_{n}\right)^{t}: v_{j} \in \mathbb{F} \text { for all } 1 \leq j \leq n\right\}
$$

The set V is often called the collection of n-tuples with entries in \mathbb{F}, and some write $V=\mathbb{F}^{n}$. Here the super script t indicated that I think of these n-tuples as columns; not rows. With the usual notions of addition and scalar multiplication, i.e. for $v, w \in V$ and $\lambda \in \mathbb{F}$, set

$$
v+w=\left(v_{1}+w_{1}, v_{2}+w_{2}, \cdots, v_{n}+w_{n}\right)^{t} \quad \text { and } \quad \lambda v=\left(\lambda v_{1}, \lambda v_{2}, \cdots, \lambda v_{n}\right)^{t}
$$

V is a vector space over \mathbb{F}.
Example 2 (Matrices). Let \mathbb{F} be a field and take integers $m, n \geq 1$. Take

$$
V=\left\{A=\left\{a_{i j}\right\}: a_{i j} \in \mathbb{F} \text { for all } 1 \leq i \leq m \text { and } 1 \leq j \leq n\right\}
$$

The set V is often called the collection of $m \times n$ matrices with entries in \mathbb{F}, and some write $V=\mathbb{F}^{m \times n}$. Here we often visualize A as a matrix with m rows and n columns, i.e.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

With the usual notions of addition and scalar multiplication, i.e. for $A, B \in V$ and $\lambda \in \mathbb{F}$, set

$$
A+B=\left\{c_{i j}\right\} \quad \text { with } c_{i j}=a_{i j}+b_{i j} \quad \text { for all } 1 \leq i \leq m \text { and } 1 \leq j \leq n \quad \text { and } \quad \lambda A=\left\{\lambda a_{i j}\right\}
$$

V is a vector space over \mathbb{F}.
One can argue that Example 2 is a special case of Example 1, however, it is often useful to think of these as two distinct examples . . .

Example 3 (Functions). Let $I \subset \mathbb{R}$ be an interval. Consider the set

$$
V=\{f: f: I \rightarrow \mathbb{F}\}
$$

The set V is often called the collection of \mathbb{F}-valued functions on I, and some write $V=\mathcal{F}(I, \mathbb{F})$. With the usual notions of addition and scalar multiplication, i.e. for $f, g \in V$ and $\lambda \in \mathbb{F}$, set

$$
(f+g)(x)=f(x)+g(x) \quad \text { and } \quad(\lambda f)(x)=\lambda f(x) \quad \text { for all } x \in I
$$

V is a vector space over \mathbb{F}.
Definition 1.2. Let V be a vector space over \mathbb{F}. A non-empty set $U \subset V$ is said to be a subspace of V if U is a vector space over \mathbb{F} when it is equipped with the same addition and scalar multiplication rules that make V a vector space over \mathbb{F}.

To check that a (non-empty) subset $U \subset V$ is a subspace, one need only check closure under addition and scalar multiplication, i.e. $u, v \in U$ imply $u+v \in U$ and $u \in U$ imply $\lambda u \in U$ for all $\lambda \in \mathbb{F}$.

Let V be a vector space over \mathbb{F} and $n \geq 1$ be an integer. Let $v_{1}, v_{2}, \cdots, v_{n} \in V$ and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in$ \mathbb{F}. The vector $v \in V$ given by

$$
v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=\sum_{i=1}^{n} \lambda_{i} v_{i}
$$

is called a linear combination of the vectors $v_{1}, v_{2}, \cdots, v_{n}$.
Definition 1.3. Let V be a vector space over \mathbb{F}. Let $n \geq 1$ and $v_{1}, v_{2}, \cdots, v_{n} \in V$. The collection of all linear combinations of the vectors $v_{1}, v_{2}, \cdots, v_{n}$, regarded as a subset of V, is called the span of these vectors. Our notation for this it

$$
\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{n}\right)=\left\{v=\sum_{i=1}^{n} \lambda_{i} v_{i}: \lambda_{i} \in \mathbb{F} \text { for all } 1 \leq i \leq n\right\}
$$

One readily checks that for any $n \geq 1$ and any collection of vectors $v_{1}, v_{2}, \cdots, v_{n} \in V$, $\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{n}\right) \subset V$ is a subspace of V. More generally, if $U \subset V$ is non-empty, then the linear hull $L(U)$ is the set of all (finite) linear combinations of elements of U. One checks that this is the smallest subspace of V containing U.
Definition 1.4. Let V be a vector space over \mathbb{F}. If there is some $n \geq 1$ and vectors $v_{1}, v_{2}, \cdots, v_{n} \in$ V for which

$$
\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V
$$

then V is said to be finite-dimensional. Any collection of vectors for which the above is true is called a spanning set for V. If V is not finite dimensional, then V is said to be infinite-dimensional.

Let us return to our examples.
Consider Example 1. The collection of n-tuples $\left\{e_{j}\right\}$ with $1 \leq j \leq n$ defined by $e_{j}=(0,0, \cdots, 0,1,0, \cdots, 0)$ with the multiplicative identity $1 \in \mathbb{F}$ in the j-th component and the additive identitiy $0 \in \mathbb{F}$ in all other components is a spanning set for $V=\mathbb{F}^{n}$. In this case, V is finite-dimensional.

Consider Example 2. The collection of matrices $\left\{E_{i j}\right\}$ defined by fixing $1 \leq i \leq m$ and $1 \leq j \leq n$ and declaring that $E_{i j}$ has a 1 in the i, j entry and 0 in all other entries has $m n<\infty$ elements. One checks that this is a spanning set for $V=\mathbb{F}^{m \times n}$, and hence V is finite-dimensional.

Consider Example 3. In general, this vector space is not finite-dimensional. In fact, take $\mathbb{F}=\mathbb{R}$ and $I=(0,1)$. For any $n \geq 1$, one can construct n disjoint compact sub-intervals of ($0,1 / 2$). For each of these sub-intervals, choose a non-zero, function supported in that sub-interval. The span of these functions will clearly not include any function compactly supported in ($1 / 2,1$).

Definition 1.5. Let V be a vector space over \mathbb{F}. A collection of vectors $v_{1}, v_{2}, \cdots, v_{n} \in V$ is said to be linearly independent if the only solution of the equation

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}=0
$$

with $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in \mathbb{F}$ is $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$.
Definition 1.6. Let V be a finite-dimensional vector space over \mathbb{F}. A collection of vectors $v_{1}, v_{2}, \cdots, v_{n} \in$ V is said to be a basis of V if the collection is a linearly independent, spanning set. In other words, the collection $v_{1}, v_{2}, \cdots, v_{n}$ is linearly independent and $\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V$.

One can prove that every finite dimensional vector space has a basis. One can also prove that for a fixed finite-dimensional vector space V, any two bases have the same number of elements.

Definition 1.7. Let $V \neq\{0\}$ be a finite-dimensional vector space over \mathbb{F}. Denote by $\operatorname{dim}(V)$ the number of elements in any basis of V. This positive integer is called the dimension of V. By convention, we take $\operatorname{dim}(\{0\})=0$.

Consider Example 1. The collection of n-tuples $\left\{e_{j}\right\}$, defined previously, is a basis of $V=\mathbb{F}^{n}$. As such, $\operatorname{dim}\left(\mathbb{F}^{n}\right)=n$.

Consider Example 2. The collection of matrices $\left\{E_{i j}\right\}$, defined previously, is a basis of $V=\mathbb{F}^{m \times n}$. As such, $\operatorname{dim}\left(\mathbb{F}^{m \times n}\right)=m n$.
1.2. On distance, length, and angles. We will frequently encounter sets equipped with certain structures. Three important examples follow.
1.2.1. On distance. Some sets are equipped with a function which describes distance. Such a function is called a metric. More precisely,

Definition 1.8. A metric on a (non-empty) set X is a function $\rho: X \times X \rightarrow[0, \infty)$, with $(x, y) \mapsto \rho(x, y)$, which satisfies the following:
(1) $\rho(x, y)=0$ if and only if $x=y$;
(2) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$;
(3) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$ for all $x, y, z \in X$.
A set X equipped with a metric is called a metric space; this is often written as (X, ρ).
If (X, ρ) is a metric space, then $\rho(x, y)$ is interpreted as the distance between x and y in X.
Note that, in general, a metric space need not have an additive structure. To be clear, given a metric space (X, ρ) and two points $x, y \in X$, it is not a priori clear that there is a well-defined sum of x and y, and in particular, a metric space need not be a vector space. What will be important for us is that, in the context of metric spaces, one can define completeness.

Definition 1.9. Let (X, ρ) be a metric space. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X is said to converge to $x \in X$ if $\lim _{n \rightarrow \infty} \rho\left(x_{n}, x\right)=0$. This may be written as $x_{n} \rightarrow x$. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X is said to be Cauchy if $\rho\left(x_{n}, x_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. The metric space (X, ρ) is said to be complete if every Cauchy sequence converges to an element of X.
1.2.2. On length. Some sets are equipped with a function which describes length. Such a function is called a norm. For this notion, an additive structure is required. More precisely,
Definition 1.10. Let V be a vector space over \mathbb{F}. A map: $\|\cdot\|: V \rightarrow \mathbb{R}, x \mapsto\|x\|$, is said to be a norm on V if it satisfies the following properties:
(1) Sub-additivity: For each $x, y \in V$,

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

(2) Positive Homogeneity: For each $x \in V$ and $\lambda \in \mathbb{F}$,

$$
\|\lambda x\|=|\lambda|\|x\| .
$$

(3) Positive Definiteness: For each $x \in V,\|x\| \geq 0$ and moreover, $\|x\|=0$ if and only if $x=0$.
V is said to be a normed space if it is a vector space equipped with a norm; this is often written $(V,\|\cdot\|)$.

If $(V,\|\cdot\|)$ is a normed space, then $\|x\|$ is interpreted as the length of x in X.
One can easily show that every normed space $(V,\|\cdot\|)$ is a metric space when V is equipped with the metric $\rho(x, y)=\|x-y\|$. This leads to an important definition.
Definition 1.11. Let $(V,\|\cdot\|)$ be a normed space. If the corresponding metric space (V, ρ), with $\rho(x, y)=\|x-y\|$, is complete, then V is said to be a Banach space.

In some cases, one encounters a function on a vector space which only satisfies sub-additivity and positive homogeneity. Such functions are called semi-norms. One can check that a semi-norm is a norm if and only if the semi-norm takes non-zero vectors to non-zero real numbers.
1.2.3. On angles. Some sets are equipped with a function which describes the angle between two elements. Such functions are called inner products or scalar products.
Definition 1.12. Let V be a vector space over \mathbb{F}. A map: $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F},(x, y) \mapsto\langle x, y\rangle$, is said to be an inner-product on V if it satisfies the following properties:
(1) Second Component Linear: For each $x, y, z \in V$ and any $\lambda \in \mathbb{F}$, one has that

$$
\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle \quad \text { and } \quad\langle x, \lambda y\rangle=\lambda\langle x, y\rangle
$$

(2) Conjugate Symmetry: For each $x, y \in V,\langle x, y\rangle=\overline{\langle y, x\rangle}$.
(3) Positive Definiteness: For each $x \in V,\langle x, x\rangle \geq 0$ and moreover, $\langle x, x\rangle=0$ if and only if $x=0$.
V is said to be an inner-product space (or pre-Hilbert Space) if it is a vector space equipped with an inner-product; this is often written $(V,\langle\cdot, \cdot\rangle)$.

In this class, we will mainly deal with complex inner-product spaces.
It is not hard to show that every inner-product space is a normed space. In fact, let $(V,\langle\cdot, \cdot\rangle)$ be an inner-product space. The map $\|\cdot\|: V \rightarrow[0, \infty)$ with

$$
\|x\|=\sqrt{\langle x, x\rangle} \quad \text { for each } x \in V
$$

is easily checked to be a norm.
In fact, the first step in this proof is the following.

Theorem 1.13 (Cauchy-Schwarz Inequality). Let $(V,\langle\cdot, \cdot\rangle)$ be an inner-product space. For each $x, y \in V$, one has that

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

where $\|x\|=\sqrt{\langle x, x\rangle}$ as discussed above.
Given the bound above, it is straight-forward to verify that every inner-product space is a normed space. As such, by a previous discussion, it is also a metric space. In this case, the notion of completeness is relevant. For clarity, the metric here is:

$$
\rho(x, y)=\|x-y\|=\sqrt{\langle x-y, x-y\rangle} \quad \text { for all } x, y \in V
$$

Definition 1.14. Let $(V,\langle\cdot, \cdot\rangle)$ be an inner-product space. If (V, ρ), regarded as a metric space with metric as described above, is complete, then V is said to be a Hilbert space.

Remark: Not all normed spaces are inner-product spaces. In fact, one can show that the norm on a normed space $(V,\|\cdot\|)$ arises from an inner-product if and only if the norm satisfies

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \quad \text { for all } x, y \in V .
$$

This well-known relation is called the Parallelogram Law.
In words, the above result shows that not all Banach spaces are Hilbert spaces. Examples of this include $L^{1}(\mathbb{R})$ and $C((0,1))$ equipped with $\|\cdot\|_{\infty}$. One can check that every finite dimensional inner-product space is a Hilbert space.

For a real inner-product space V, given two vectors $x, y \in V \backslash\{0\}$, the quantity

$$
\begin{equation*}
\theta_{x, y}=\cos ^{-1}\left(\frac{\langle x, y\rangle}{\|x\|\|y\|}\right) \in[0, \pi] \tag{1}
\end{equation*}
$$

is said to describe the angle between x and y in V.
1.2.4. Some Examples. Consider Example 1. One readily checks that

$$
\langle x, y\rangle=\sum_{i=1}^{n} \overline{x_{i}} \cdot y_{i}
$$

defines an inner-product on $V=\mathbb{C}^{n}$. In this case, $V=\mathbb{C}^{n}$ is a normed space when equipped with

$$
\|x\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

Consider Example 2. One readily checks that

$$
\langle A, B\rangle_{\mathrm{HS}}=\operatorname{Tr}\left[A^{*} B\right]
$$

defines an inner-product on $V=\mathbb{C}^{n \times n}$. This is called the Hilbert-Schmidt inner product. In this case, $V=\mathbb{C}^{n \times n}$ is a normed space when equipped with

$$
\|A\|_{\mathrm{HS}}=\sqrt{\operatorname{Tr}\left[A^{*} A\right]}
$$

which is called the Hilbert-Schmidt norm.
Consider Example 2 again. One readily checks that $V=\mathbb{C}^{n \times n}$ is a normed space when equipped with

$$
\|A\|=\sup _{\substack{\psi \in \mathbb{C}^{n}, \psi \neq 0}} \frac{\|A \psi\|}{\|\psi\|}
$$

This norm is called the operator norm.
Consider Example 3. For any $f \in V$, one can define

$$
\|f\|_{\infty}=\sup _{x \in I}|f(x)| .
$$

One can check that

$$
U=\left\{f \in V:\|f\|_{\infty}<\infty\right\}
$$

is a subspace of V. In fact, one checks that $\|\cdot\|_{\infty}$ is a norm on U. Consider Example 3 again. For any measurable $f \in V$, one can define

$$
\|f\|_{2}=\sqrt{\int_{I}|f(x)|^{2} d x}
$$

One can check that

$$
\tilde{U}=\left\{f \in V: f \text { is measurable and }\|f\|_{2}<\infty\right\}
$$

is a subspace of V. In fact, one checks that $\|\cdot\|_{2}$ is a semi-norm on \tilde{U}. What's more, one can further check that $\|\cdot\|_{2}$ is the semi-norm induced by the semi-inner-product

$$
\langle f, g\rangle=\int_{I} \overline{f(x)} \cdot g(x) d x
$$

An easy way to make this semi-norm into a norm is to first restrict to continuous functions $f \in V$. In this case, the the semi-inner-product also becomes an inner-product.

Remark: We have to work harder to get a Hilbert space out of $\|\cdot\|_{2}$. This requires equivalence classes of functions which agree almost everywhere. The resulting Hilbert space is denoted by $L^{2}(I)$.

