
1. On Orthogonality

The notion of orthogonal, or perpendicular, vectors in an inner-product space is quite useful.
Here we introduce some simple consequences.

Definition 1.1. Let H be a pre-Hilbert space. (Thus H is a vector space over F ∈ {R,C} equipped
with an inner-produce 〈·, ·〉. The use of the pre-fix pre indicates that this inner-product space need
not be complete.) Two vectors f, g ∈ H are said to be orthogonal if 〈f, g〉 = 0. We may write this
as f ⊥ g.

Note that if H is a pre-Hilbert space and f, g ∈ H are orthogonal, i.e. f ⊥ g, then

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + ‖g‖2

and this formula is often called the Pythagorean Theorem for obvious reasons.
Let us now fix a pre-Hilbert space H. A vector f ∈ H is said to be orthogonal to a subset U ⊂ H

if 〈f, g〉 = 0 for all g ∈ U . This may be written as f ⊥ U . Two subsets U, V ⊂ H are said to be
orthogonal, written U ⊥ V , if 〈f, g〉 = 0 for all f ∈ U and g ∈ V . If U ⊂ H, then the set

U⊥ = {f ∈ H : f ⊥ U}
is called the orthogonal complement of U.

The following proposition, see page 29 of the text, summarizes several useful properties associated
with this notion of orthogonality.

Proposition 1.2. Let H be a pre-Hilbert space.

(1) One can check that {0}⊥ = H and H⊥ = {0}. In words, this shows that 0 is the only vector
orthogonal to every element of H.

(2) For every U ⊂ H, U⊥ is a closed subspace of H.
(3) If U ⊂ V ⊂ H, then V ⊥ ⊂ U⊥.
(4) For every U ⊂ H,

U⊥ = L(U)⊥ =
(
L(U)

)⊥
.

Note: In the above, for any U ⊂ H, L(U) ⊂ H is the set of all finite linear combinations of
elements of U . As such, it is the smallest subspace of H containing U . Thus by (2) above, we also

know that U⊥ = L(U⊥) = L(U⊥).

1.1. On internal and external direct sums. A direct sum is a special form of the sum of two
sub-spaces.

1.1.1. On internal direct sums. Let H be a vector space over F ∈ {R,C}. For any two subspaces,
U1, U2 ⊂ H, the sum of these subspaces is given by

U1 + U2 = {f ∈ H : f = g1 + g2 where g1 ∈ U1 and g2 ∈ U2}
One readily checks that U1 + U2 ⊂ H is a subspace.

In the special case that U1, U2 ⊂ H are subspaces with trivial intersection, i.e. U1 ∩ U2 = {0},
then the sum of these subspaces is written as U1+̇U2 and such a sum is called a direct sum.

Direct sums are particularly useful because one readily checks that: If U1+̇U2 is the direct sum
of subspaces in H, then each f ∈ U1+̇U2 has a unique representation as f = g1 + g2 with g1 ∈ U1

and g2 ∈ U2.
If H is a pre-Hilbert space and U1, U2 ⊂ H are orthogonal subspaces, i.e. U1 ⊥ U2, then clearly

U1 ∩ U2 = {0}. In this case, the direct sum is written as U1 ⊕ U2 and is called an orthogonal sum.
An important fact, which is a consequence of Theorem 3.3 c) on page 32, is the following. Let

H be a Hilbert space and U ⊂ H be a closed subspace. Then H = U ⊕ U⊥.
The above described internal direct sums, i.e. sums of subspaces of a fixed vector space.
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1.1.2. On external direct sums. In some cases, we want to add two vector spaces together. Special
cases of this form external direct sums.

Let H1 and H2 be vector spaces over F ∈ {R,C}. The Cartesian product of these spaces, i.e.

H1 ×H2 = {(f, g) : f ∈ H1 and g ∈ H2}
is clearly a vector space over F with the usual notions of vector addition an scalar multiplication.

If H1 and H2 are both pre-Hilbert spaces over F ∈ {R,C}, then H1 ×H2 is a pre-Hilbert space
as well, when equipped with

〈(f1, g1), (f2, g2)〉 = 〈f1, f2〉1 + 〈g1, g2〉2
One checks that H = H1 ×H2 is a Hilbert space if and only if H1 and H2 are Hilbert spaces.

The Hilbert space H = H1 ×H2 is often written as H = H1 ⊕H2, and called an external direct
sum. This is because we can identify H1 with the subspace

U1 = {(f, 0) : f ∈ H1} ⊂ H
and similarly identify H2 with the subspace

U2 = {(0, g) : g ∈ H2} ⊂ H
Since U1 ⊥ U2, this external direct sum may be identified with an internal direct sum in H.

For more on this, see Exercise 1.11 on page 14, Exercise 2.2 a) on page 21, and the comments
starting with If A is an arbitrary set ... on page 33.


