1. On Orthogonality

The notion of orthogonal, or perpendicular, vectors in an inner-product space is quite useful. Here we introduce some simple consequences.

Definition 1.1. Let \mathcal{H} be a pre-Hilbert space. (Thus \mathcal{H} is a vector space over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ equipped with an inner-produce $\langle\cdot, \cdot\rangle$. The use of the pre-fix pre indicates that this inner-product space need not be complete.) Two vectors $f, g \in \mathcal{H}$ are said to be orthogonal if $\langle f, g\rangle=0$. We may write this as $f \perp g$.

Note that if \mathcal{H} is a pre-Hilbert space and $f, g \in \mathcal{H}$ are orthogonal, i.e. $f \perp g$, then

$$
\|f+g\|^{2}=\langle f+g, f+g\rangle=\|f\|^{2}+\|g\|^{2}
$$

and this formula is often called the Pythagorean Theorem for obvious reasons.
Let us now fix a pre-Hilbert space \mathcal{H}. A vector $f \in \mathcal{H}$ is said to be orthogonal to a subset $U \subset \mathcal{H}$ if $\langle f, g\rangle=0$ for all $g \in U$. This may be written as $f \perp U$. Two subsets $U, V \subset \mathcal{H}$ are said to be orthogonal, written $U \perp V$, if $\langle f, g\rangle=0$ for all $f \in U$ and $g \in V$. If $U \subset \mathcal{H}$, then the set

$$
U^{\perp}=\{f \in \mathcal{H}: f \perp U\}
$$

is called the orthogonal complement of U.
The following proposition, see page 29 of the text, summarizes several useful properties associated with this notion of orthogonality.
Proposition 1.2. Let \mathcal{H} be a pre-Hilbert space.
(1) One can check that $\{0\}^{\perp}=\mathcal{H}$ and $\mathcal{H}^{\perp}=\{0\}$. In words, this shows that 0 is the only vector orthogonal to every element of \mathcal{H}.
(2) For every $U \subset \mathcal{H}, U^{\perp}$ is a closed subspace of \mathcal{H}.
(3) If $U \subset V \subset \mathcal{H}$, then $V^{\perp} \subset U^{\perp}$.
(4) For every $U \subset \mathcal{H}$,

$$
U^{\perp}=L(U)^{\perp}=(\overline{L(U)})^{\perp}
$$

Note: In the above, for any $U \subset \mathcal{H}, L(U) \subset \mathcal{H}$ is the set of all finite linear combinations of elements of U. As such, it is the smallest subspace of \mathcal{H} containing U. Thus by (2) above, we also know that $U^{\perp}=L\left(U^{\perp}\right)=\overline{L\left(U^{\perp}\right)}$.
1.1. On internal and external direct sums. A direct sum is a special form of the sum of two sub-spaces.
1.1.1. On internal direct sums. Let \mathcal{H} be a vector space over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. For any two subspaces, $U_{1}, U_{2} \subset \mathcal{H}$, the sum of these subspaces is given by

$$
U_{1}+U_{2}=\left\{f \in \mathcal{H}: f=g_{1}+g_{2} \text { where } g_{1} \in U_{1} \text { and } g_{2} \in U_{2}\right\}
$$

One readily checks that $U_{1}+U_{2} \subset \mathcal{H}$ is a subspace.
In the special case that $U_{1}, U_{2} \subset \mathcal{H}$ are subspaces with trivial intersection, i.e. $U_{1} \cap U_{2}=\{0\}$, then the sum of these subspaces is written as $U_{1} \dot{+} U_{2}$ and such a sum is called a direct sum.

Direct sums are particularly useful because one readily checks that: If $U_{1} \dot{+} U_{2}$ is the direct sum of subspaces in \mathcal{H}, then each $f \in U_{1} \dot{+} U_{2}$ has a unique representation as $f=g_{1}+g_{2}$ with $g_{1} \in U_{1}$ and $g_{2} \in U_{2}$.

If \mathcal{H} is a pre-Hilbert space and $U_{1}, U_{2} \subset \mathcal{H}$ are orthogonal subspaces, i.e. $U_{1} \perp U_{2}$, then clearly $U_{1} \cap U_{2}=\{0\}$. In this case, the direct sum is written as $U_{1} \oplus U_{2}$ and is called an orthogonal sum.

An important fact, which is a consequence of Theorem 3.3 c) on page 32, is the following. Let \mathcal{H} be a Hilbert space and $U \subset \mathcal{H}$ be a closed subspace. Then $\mathcal{H}=U \oplus U^{\perp}$.

The above described internal direct sums, i.e. sums of subspaces of a fixed vector space.
1.1.2. On external direct sums. In some cases, we want to add two vector spaces together. Special cases of this form external direct sums.

Let \mathcal{H}_{1} and \mathcal{H}_{2} be vector spaces over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. The Cartesian product of these spaces, i.e.

$$
\mathcal{H}_{1} \times \mathcal{H}_{2}=\left\{(f, g): f \in \mathcal{H}_{1} \text { and } g \in \mathcal{H}_{2}\right\}
$$

is clearly a vector space over \mathbb{F} with the usual notions of vector addition an scalar multiplication.
If \mathcal{H}_{1} and \mathcal{H}_{2} are both pre-Hilbert spaces over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$, then $\mathcal{H}_{1} \times \mathcal{H}_{2}$ is a pre-Hilbert space as well, when equipped with

$$
\left\langle\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right)\right\rangle=\left\langle f_{1}, f_{2}\right\rangle_{1}+\left\langle g_{1}, g_{2}\right\rangle_{2}
$$

One checks that $\mathcal{H}=\mathcal{H}_{1} \times \mathcal{H}_{2}$ is a Hilbert space if and only if \mathcal{H}_{1} and \mathcal{H}_{2} are Hilbert spaces.
The Hilbert space $\mathcal{H}=\mathcal{H}_{1} \times \mathcal{H}_{2}$ is often written as $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, and called an external direct sum. This is because we can identify \mathcal{H}_{1} with the subspace

$$
U_{1}=\left\{(f, 0): f \in \mathcal{H}_{1}\right\} \subset \mathcal{H}
$$

and similarly identify \mathcal{H}_{2} with the subspace

$$
U_{2}=\left\{(0, g): g \in \mathcal{H}_{2}\right\} \subset \mathcal{H}
$$

Since $U_{1} \perp U_{2}$, this external direct sum may be identified with an internal direct sum in \mathcal{H}.
For more on this, see Exercise 1.11 on page 14, Exercise 2.2 a) on page 21, and the comments starting with If A is an arbitrary set \ldots on page 33.

