Second Quantization

Mohammad Javad Latifi Jebelli

December 2018

1 Fock Space

In the following paper, we go over a mathematical treatment of second quantization and, in the last section, we will discuss the way that it appears in many physics text books. The state of an n particle system is given by the Hilbert space $\mathcal{H}=\mathcal{L}^{2}\left(\mathbb{R}^{n \nu}\right)$. To have variable number of particles, we introduce the Fock space defined as the direct sum

$$
\mathcal{F}(\mathcal{H}):=\bigoplus_{n \geq 0} \mathcal{L}^{2}\left(\mathbb{R}^{n \nu}\right)=\mathbb{C} \oplus \mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right) \oplus \mathcal{L}^{2}\left(\mathbb{R}^{2 \nu}\right) \oplus \ldots
$$

Mathematically, this is the tensor algebra of \mathcal{H}, equipped with a Hilbert space inner product. We can rewrite this in terms of \mathcal{H}

$$
\mathcal{H}=\mathbb{C} \oplus \mathcal{H}^{(1)} \oplus \mathcal{H}^{(2)} \oplus \mathcal{H}^{(3)} \ldots
$$

where $\mathcal{H}^{(n)}:=\mathcal{H} \otimes \cdots \otimes \mathcal{H}$ (n times). It is not very hard to verify that $\mathcal{L}^{2}\left(\mathbb{R}^{2 \nu}\right)=\mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right) \otimes \mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right)$, and in general $\mathcal{L}^{2}\left(\mathbb{R}^{n \nu}\right)=\mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right)^{(n)}$. Elements of \mathcal{F} are sequences of the form

$$
\psi=\left\{\psi^{(n)}\right\}_{n \geq 0}=\left(\psi^{(0)}, \psi^{(1)}, \psi^{(2)}, \ldots\right)
$$

with $\psi^{(0)} \in \mathbb{C}$ and $\psi^{(n)} \in \mathcal{H}^{(n)}$. For $\phi, \psi \in \mathcal{F}$, the inner product is defined by

$$
\langle\psi, \phi\rangle:=\sum_{n \geq 0}\left\langle\psi^{(n)}, \phi^{(n)}\right\rangle
$$

and the corresponding norm is given by $\|\psi\|^{2}=\sum_{n \geq 0}\left\|\psi^{(n)}\right\|^{2}$. The state $(1,0,0, \ldots) \in$ \mathcal{F} represents the vacuum, and it is denoted by $\bar{\Omega}$.

2 Bose and Fermi Statistics

For the Fock space corresponded to the Hilbert space $\mathcal{H}=\mathcal{L}^{2}\left(\mathbb{R}^{n \nu}\right)$, there are two type of restrictions imposed by quantum statistics. These restrictions are arising from the effect of permuting the particle positions (or in tensor form permuting individual factors in a tensor product).

The first, arises when components ψ in each $\mathcal{H}^{(n)}$ is symmetric under interchange of coordinates, these are called bosons. The second case arises when components of ψ are anti-symmetric under interchange of coordinates (they will differ by a minus sign when transformed under an odd permutation), a particles with this property is called a fermion. The subspaces of \mathcal{F}, corresponded to bosons and fermions are denoted by \mathcal{F}_{+}and \mathcal{F}_{-}respectively.

The projections onto $\mathcal{F}_{ \pm}$, for a simple tensor in $\mathcal{H}^{(n)}$ is given by

$$
\begin{gathered}
P_{+}\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}\right):=\frac{1}{n!} \sum_{\sigma} f_{\sigma(1)} \otimes f_{\sigma(2)} \otimes \cdots \otimes f_{\sigma(n)} \\
P_{-}\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}\right):=\frac{1}{n!} \sum_{\sigma} \operatorname{sgn}(\sigma) f_{\sigma(1)} \otimes f_{\sigma(2)} \otimes \cdots \otimes f_{\sigma(n)}
\end{gathered}
$$

where the sum is taken over all permutations. Also, $\operatorname{sgn}(\sigma)$ is defined to be the determinant of the matrix constructed by applying σ to the columns of the identity matrix I_{n}.

Remark $1 P_{ \pm}$are bounded operators with norm equal to 1 as projections
Now, the bose and fermi Fock subspaces can be defined precisely by $\mathcal{F}_{+}:=$ $P_{+}(\mathcal{F})$ and $\mathcal{F}_{-}:=P_{-}(\mathcal{F})$

3 Second Quantization of Operators

In the following section, let U be a unitary operator defined on \mathcal{H}. Also, assume that the self adjoint operator H is the infinitesimal generator of the unitary evolution, i.e

$$
U_{t}=e^{i t H}
$$

To any unitary operator U on \mathcal{H}, one can correspond a unitary operator on $\mathcal{F}(\mathcal{H})$. In the case of two non-interacting particles, one may naturally define

$$
\Gamma(U)(f \otimes g):=U f \otimes U g
$$

This leads to the following definition
Definition 1 For a unitary operator U on $\mathcal{H}=\mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right)$, let $U_{0}=1$ and for the bosonic and fermi subspaces define U_{n} by

$$
U_{n}\left(P_{ \pm}\left(f_{1} \otimes \cdots \otimes f_{n}\right)\right):=P_{ \pm}\left(U f_{1} \otimes \cdots \otimes U f_{n}\right)
$$

then $\Gamma(U)$, the second quantization of U on $\mathcal{F}(\mathcal{H})$, is defined by action of U_{n} on components $\mathcal{H}^{(n)}$, i.e

$$
\Gamma(U):=\bigoplus_{n \geq 0} U_{n}
$$

Now, we want to define second quantization of a self adjoin operator, as the generator of a unitary evolution (we assume that H is defined on a dense subset of $\mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right)$). To have a natural definition, we need to examine the expression

$$
\left.\frac{d}{d t}\right|_{t=0} U_{t} f \otimes U_{t} g
$$

Recall, if B is a bilinear map, for vector valued functions f and g and small ϵ, we have

$$
\begin{aligned}
& B(f(\epsilon), g(\epsilon)) \approx B\left(f(0)+\epsilon f^{\prime}(0), g(0)+\epsilon g^{\prime}(0)\right)=B(f(0), g(0)) \\
& +\epsilon\left[B\left(f^{\prime}(0), g(0)\right)+B\left(f(0), g^{\prime}(0)\right)\right]+\epsilon^{2} B\left(f^{\prime}(0), g^{\prime}(0)\right)
\end{aligned}
$$

which suggests that

$$
\left.\frac{d}{d t}\right|_{t=0} U_{t} f \otimes U_{t} g=i H f_{1} \otimes f_{2}+f_{1} \otimes i H f_{2}
$$

as a consequence, we have motivated the following definition:
Definition 2 For a self adjoin operator H on $\mathcal{H}=\mathcal{L}^{2}\left(\mathbb{R}^{\nu}\right)$, let $H_{0}=0$ and define

$$
H_{n}\left(P_{ \pm}\left(f_{1} \otimes \cdots \otimes f_{n}\right)\right):=P_{ \pm}\left(\sum_{i=1}^{n} f_{1} \otimes \cdots \otimes H f_{i} \otimes \cdots \otimes f_{n}\right)
$$

then $d \Gamma(H)$, the second quantization of H on $\mathcal{F}(\mathcal{H})$, is defined

$$
d \Gamma(U):=\overline{\bigoplus_{n \geq 0} H_{n}}
$$

where the bar represents the self adjoin closure.
Now, if U_{t} is a strongly continous one-parameter group of evolution, then

$$
\Gamma\left(U_{t}\right)=e^{i t d \Gamma(H)}
$$

4 The number operator

The number operator N, is defined as the second quntization of the identity operator on \mathcal{H}

$$
\begin{aligned}
N & =d \Gamma(1) \\
N \psi & =\left\{n \psi^{(n)}\right\}
\end{aligned}
$$

with the domain

$$
D(N)=\left\{\psi \in \mathcal{F}: \sum_{n \geq 0} n^{2}\left\|\psi^{(n)}\right\|<\infty\right\}
$$

To understand this operator, let see how it acts on a two particle state

$$
d \Gamma(1) f \otimes g=1 f \otimes g+f \otimes 1 g=2 f \otimes g
$$

and in general, any n-particle state in $\mathcal{H}^{(n)}$ will be an eigenvector of N, with eigenvalue n.

5 The creation and Annihilation Operators

Definition 3 The creation operator $a^{\dagger}(f)$ is defined by

$$
a^{\dagger}(f) f_{1} \otimes \cdots \otimes f_{n}=\sqrt{n+1} f \otimes f_{1} \otimes \cdots \otimes f_{n}
$$

and the annihilation operator $a(f)$ by

$$
a(f) f_{1} \otimes \cdots \otimes f_{n}=\sqrt{n}\left\langle f, f_{1}\right\rangle f_{2} \otimes \cdots \otimes f_{n}
$$

For bosons and fermions, creation and annihilation are defined by

$$
\begin{gathered}
a_{ \pm}^{\dagger}(f):=P_{ \pm} a^{\dagger}(f) P_{ \pm} \\
a_{ \pm}(f):=P_{ \pm} a(f) P_{ \pm}
\end{gathered}
$$

The creation operator $a^{\dagger}(f)$ creates a particle with state f, and the annihilation operator annihilates a particle similarly. One can show that these operators are adjoint of each other. One particle states are given by

$$
a_{ \pm}^{\dagger}(f) \Omega
$$

Using the fact that $P_{-}(f \otimes f)=0$, we have $a_{-}^{\dagger}(f) a_{-}^{\dagger}(f)=0$, this is the Pauli exclusion principle. On the Fock space the number operator N can be decomposed using operators N_{f} defined by

$$
N_{f}:=a^{\dagger}(f) a(f)
$$

One can check that N_{f} counts the number of particles in state $f \in \mathcal{H}$, and for $\psi \in D(N)$

$$
\langle\psi, N \psi\rangle=\sum_{\alpha}\left\langle\psi, N_{f_{\alpha}} \psi\right\rangle
$$

where the sum is taken over an orthonormal basis of \mathcal{H}.

6 Position and Momentum Spaces

Recall our definition for creation operator $a^{\dagger}(f)$

$$
\begin{gathered}
a^{\dagger}(f) f_{1} \otimes \cdots \otimes f_{n}=\sqrt{n+1} f \otimes f_{1} \otimes \cdots \otimes f_{n} \\
a^{\dagger}(f) \Omega=f
\end{gathered}
$$

In this section, we use above notation for a and a^{\dagger} for the momentum space. Hence, $a^{\dagger}(\phi)$ creates a particle with momentum state $\phi(p)$. Using generalized functions, we can formally write a particle state with definite position x_{0} and undetermined momentum:

$$
\phi_{x_{0}}(p)=e^{-i p \cdot x_{0}}
$$

to verify this, we can apply the inverse Fourier transform to get

$$
\int_{p} e^{i p \cdot x} \phi_{x_{0}}(p) d p=\delta\left(x-x_{0}\right)
$$

Using our notation

$$
a^{\dagger}\left(e^{-i p \cdot x_{0}}\right)=e^{-i p \cdot x_{0}}
$$

The operator $a^{\dagger}\left(e^{-i p \cdot x_{0}}\right)$ is typically denoted simply by a_{p}^{\dagger}. Now, if we define a creation operator $\Psi^{\dagger}\left(x_{0}\right)$, using a new notation in position space, by

$$
\Psi^{\dagger}\left(x_{0}\right) \Omega=\delta\left(x-x_{0}\right)
$$

We observe that

$$
\Psi^{\dagger}\left(x_{0}\right) \Omega=\int_{p} e^{i p \cdot x} a^{\dagger}\left(\phi_{x_{0}}\right) \Omega d p
$$

Hence, formally, one can write

$$
\Psi^{\dagger}\left(x_{0}\right) \Omega=\left[\int_{p} e^{i p \cdot x} a_{p}^{\dagger} d p\right] \Omega
$$

so

$$
\Psi^{\dagger}\left(x_{0}\right)=\int_{p} e^{i p \cdot x} a_{p}^{\dagger} d p
$$

We see that both a_{p}^{\dagger} and $\Psi^{\dagger}\left(x_{0}\right)$ create a particle with definite position x_{0}, but in momentum space and position space respectively. In other words, $a^{\dagger}\left(\phi_{x_{0}}\right)$ is the Fourier transform of $\Psi^{\dagger}\left(x_{0}\right)$. The same kind of relationship holds for annihilation operators

$$
\Psi\left(x_{0}\right)=\int_{p} e^{-i p \cdot x} a_{p} d p
$$

