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1 Fock Space

In the following paper, we go over a mathematical treatment of second quanti-
zation and, in the last section, we will discuss the way that it appears in many
physics text books. The state of an n particle system is given by the Hilbert
space H = L2(Rnν). To have variable number of particles, we introduce the
Fock space defined as the direct sum

F(H) :=
⊕
n≥0

L2(Rnν) = C⊕ L2(Rν)⊕ L2(R2ν)⊕ . . .

Mathematically, this is the tensor algebra of H, equipped with a Hilbert
space inner product. We can rewrite this in terms of H

H = C⊕H(1) ⊕H(2) ⊕H(3) . . .

where H(n) := H ⊗ · · · ⊗ H (n times). It is not very hard to verify that
L2(R2ν) = L2(Rν)⊗L2(Rν), and in general L2(Rnν) = L2(Rν)(n). Elements of
F are sequences of the form

ψ = {ψ(n)}n≥0 = (ψ(0), ψ(1), ψ(2), . . . )

with ψ(0) ∈ C and ψ(n) ∈ H(n). For φ, ψ ∈ F , the inner product is defined
by

〈ψ, φ〉 :=
∑
n≥0

〈
ψ(n), φ(n)

〉
and the corresponding norm is given by ‖ψ‖2 =

∑
n≥0

‖ψ(n)‖2. The state (1, 0, 0, . . . ) ∈

F represents the vacuum, and it is denoted by Ω.
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2 Bose and Fermi Statistics

For the Fock space corresponded to the Hilbert space H = L2(Rnν), there are
two type of restrictions imposed by quantum statistics. These restrictions are
arising from the effect of permuting the particle positions (or in tensor form
permuting individual factors in a tensor product).

The first, arises when components ψ in each H(n) is symmetric under inter-
change of coordinates, these are called bosons. The second case arises when
components of ψ are anti-symmetric under interchange of coordinates (they will
differ by a minus sign when transformed under an odd permutation), a particles
with this property is called a fermion. The subspaces of F , corresponded to
bosons and fermions are denoted by F+ and F− respectively.

The projections onto F±, for a simple tensor in H(n) is given by

P+(f1 ⊗ f2 ⊗ · · · ⊗ fn) :=
1

n!

∑
σ

fσ(1) ⊗ fσ(2) ⊗ · · · ⊗ fσ(n)

P−(f1 ⊗ f2 ⊗ · · · ⊗ fn) :=
1

n!

∑
σ

sgn(σ) fσ(1) ⊗ fσ(2) ⊗ · · · ⊗ fσ(n)

where the sum is taken over all permutations. Also, sgn(σ) is defined to be
the determinant of the matrix constructed by applying σ to the columns of the
identity matrix In.

Remark 1 P± are bounded operators with norm equal to 1 as projections

Now, the bose and fermi Fock subspaces can be defined precisely by F+ :=
P+(F) and F− := P−(F)
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3 Second Quantization of Operators

In the following section, let U be a unitary operator defined on H. Also, assume
that the self adjoint operator H is the infinitesimal generator of the unitary
evolution, i.e

Ut = eitH

To any unitary operator U on H, one can correspond a unitary operator on
F(H). In the case of two non-interacting particles, one may naturally define

Γ(U)(f ⊗ g) := Uf ⊗ Ug

This leads to the following definition

Definition 1 For a unitary operator U on H = L2(Rν), let U0 = 1 and for the
bosonic and fermi subspaces define Un by

Un(P±(f1 ⊗ · · · ⊗ fn)) := P±(Uf1 ⊗ · · · ⊗ Ufn)

then Γ(U), the second quantization of U on F(H), is defined by action of Un
on components H(n), i.e

Γ(U) :=
⊕
n≥0

Un

Now, we want to define second quantization of a self adjoin operator, as the
generator of a unitary evolution (we assume that H is defined on a dense subset
of L2(Rν)). To have a natural definition, we need to examine the expression

d

dt

∣∣∣
t=0

Utf ⊗ Utg

Recall, if B is a bilinear map, for vector valued functions f and g and small ε,
we have

B
(
f(ε), g(ε)

)
≈ B

(
f(0) + εf ′(0), g(0) + εg′(0)

)
= B

(
f(0), g(0)

)
+ε
[
B
(
f ′(0), g(0)) +B(f(0), g′(0)

)]
+ ε2B

(
f ′(0), g′(0)

)
which suggests that

d

dt

∣∣∣
t=0

Utf ⊗ Utg = iHf1 ⊗ f2 + f1 ⊗ iHf2

as a consequence, we have motivated the following definition:

Definition 2 For a self adjoin operator H on H = L2(Rν), let H0 = 0 and
define

Hn(P±(f1 ⊗ · · · ⊗ fn)) := P±(

n∑
i=1

f1 ⊗ · · · ⊗Hfi ⊗ · · · ⊗ fn)

3



then dΓ(H), the second quantization of H on F(H), is defined

dΓ(U) :=
⊕
n≥0

Hn

where the bar represents the self adjoin closure.

Now, if Ut is a strongly continous one-parameter group of evolution, then

Γ(Ut) = eitdΓ(H)

4 The number operator

The number operator N , is defined as the second quntization of the identity
operator on H

N = dΓ(1)

Nψ = {nψ(n)}

with the domain

D(N) = {ψ ∈ F :
∑
n≥0

n2‖ψ(n)‖ <∞}

To understand this operator, let see how it acts on a two particle state

dΓ(1) f ⊗ g = 1f ⊗ g + f ⊗ 1g = 2f ⊗ g

and in general, any n-particle state in H(n) will be an eigenvector of N , with
eigenvalue n.

5 The creation and Annihilation Operators

Definition 3 The creation operator a†(f) is defined by

a†(f) f1 ⊗ · · · ⊗ fn =
√
n+ 1 f ⊗ f1 ⊗ · · · ⊗ fn

and the annihilation operator a(f) by

a(f)f1 ⊗ · · · ⊗ fn =
√
n 〈f, f1〉 f2 ⊗ · · · ⊗ fn

For bosons and fermions, creation and annihilation are defined by

a†±(f) := P±a
†(f)P±

a±(f) := P±a(f)P±
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The creation operator a†(f) creates a particle with state f , and the annihila-
tion operator annihilates a particle similarly. One can show that these operators
are adjoint of each other. One particle states are given by

a†±(f)Ω

Using the fact that P−(f ⊗ f) = 0, we have a†−(f) a†−(f) = 0, this is the
Pauli exclusion principle. On the Fock space the number operator N can be
decomposed using operators Nf defined by

Nf := a†(f)a(f)

One can check that Nf counts the number of particles in state f ∈ H, and for
ψ ∈ D(N)

〈ψ,Nψ〉 =
∑
α

〈ψ,Nfαψ〉

where the sum is taken over an orthonormal basis of H.

6 Position and Momentum Spaces

Recall our definition for creation operator a†(f)

a†(f) f1 ⊗ · · · ⊗ fn =
√
n+ 1 f ⊗ f1 ⊗ · · · ⊗ fn

a†(f) Ω = f

In this section, we use above notation for a and a† for the momentum space.
Hence, a†(φ) creates a particle with momentum state φ(p). Using generalized
functions, we can formally write a particle state with definite position x0 and
undetermined momentum:

φx0
(p) = e−ip·x0

to verify this, we can apply the inverse Fourier transform to get∫
p

eip·xφx0(p) dp = δ(x− x0)

Using our notation
a†(e−ip·x0) = e−ip·x0

The operator a†(e−ip·x0) is typically denoted simply by a†p. Now, if we define a

creation operator Ψ†(x0), using a new notation in position space, by

Ψ†(x0)Ω = δ(x− x0)

We observe that

Ψ†(x0)Ω =

∫
p

eip·xa†(φx0)Ω dp
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Hence, formally, one can write

Ψ†(x0)Ω =

∫
p

eip·xa†p dp

Ω

so

Ψ†(x0) =

∫
p

eip·xa†p dp

We see that both a†p and Ψ†(x0) create a particle with definite position
x0, but in momentum space and position space respectively. In other words,
a†(φx0) is the Fourier transform of Ψ†(x0). The same kind of relationship holds
for annihilation operators

Ψ(x0) =

∫
p

e−ip·xap dp
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