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1 Motivation

We already know that in order for a linear operator to be diagonalizable by a change of
basis, the operator has to be a normal one i.e.:

[N,N †] = 0

But when investigating the case of simple harmonic oscillator in Hamiltonian me-
chanics, we see something which at first glance seems contradictory to this assumption.
Consider the following Hamiltonian:

H(p, q) =
p2

2m
+

1

2
mω2x2

The Hamiltonian equations of motion are as follows:

∂H(p, q)

∂x
= −ṗ

∂H(p, q)

∂p
= ẋ

Which for a S.H.O leads to the following equations:

mω2x = −ṗ
p

m
= ẋ

This is a system of two coupled first order differential equations. We can write it in
the matrix form:

d

dx

[
p
x

]
=

[
0 −mω2

1
m

0

] [
p
x

]
Since there is no t dependence in the matrix of coefficients, the standard steps to

decouple this system includes trying to find some coordinate transformation in which
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this matrix has a diagonal form in a new basis (x′, p′). This will obviously decouple the
system of equations. After solving the system of independent equations in this basis, we
can use the inverse transformation to derive the equations of motion in (x, p) basis. But
the problem here is that the matrix of coefficients here is not a normal one:[

0 −mω2

1
m

0

] [
0 1

m

−mω2 0

]
6=
[

0 1
m

−mω2 0

] [
0 −mω2

1
m

0

]
So is there any way for us to find a transformation that diagonalizes the coefficient

matrix? The problem here can be viewed from another point of view by using a different
mathematical arsenal. We can then see that the process of diagonalizing matrix of the
coefficients is equivalent with diagonalizing the Hamiltonian itself. The geometric tools
that I will be using here is called symplectic geometry (and some of you migh be already
familiar with it). But before that, a few preliminary sections are in order.

2 Preliminaries 1: Some Definitions

Definition 1: Let E be a real vector space. A vector in E will be denoted by z. A
symplectic form an E is a mapping ω : E × E → R which is:

1) Bilinear:

∀z, z1, z2, z′, z′1, z′2 ∈ E,∀α1, α2 ∈ R

ω(α1z1 + α2z2, z
′) = α1ω(z1, z

′) + α2ω(z2, z
′)

ω(z, α1z
′
1 + α2z

′
2) = α1ω(z, z′1) + α2ω(z, z′2)

2) Antisymmetric:

∀z, z′ ∈ E

ω(z, z′) = −ω(z′, z)

(Which implies: ω(z, z) = 0)
3) Non-degenerate:

∀z ∈ E ω(z, z′) = 0

if and only if
z′ = 0

Definition 2: A real symplectic space is a pair (E,ω) where E is a real vector space
on R and ω a symplectic form. The dimension of (E,ω) is, by definition, the dimension
of E.

A very important example of a finite dimensional symplectic space is the standard
symplectic space (R2n, σ) where σ the standard symplectic form is defined as:
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σ(z, z′) =
n∑
j=1

pjx
′
j − p′jxj

With z = (x1, ...xn; p1, ...pn) and z′ = (x′1, ...x
′
n; p′1, ...p

′
n)

We can already see that the symplectic form can play the role of an inner product
in our space. In fact for any Hilbert space X and its dual X∗, we can define a biliear
antisymmetric form such that:

∀z = (x, p), z′(x′, p′) ∈ X ⊕X∗ζ : X ⊕X∗ → R

ζ(z, z′) = 〈p, x′〉 − 〈p′, x〉

It is easy to check that ζ is a sympletic form.
Definition 3: Let Φ be the mapping E → E∗ which to every z ∈ E associates the

linear form Φz defined by
Φz(z

′) = ω(z, z′)

The non-degeneracy of the symplectic form can be restated as follows:
ω is non-degenerate if and only if Φ is a monomorphism E → E∗.
Definition 4: A set B of vectors like:

B = {e1, ...en} ∪ {f1, ..., fn}

in E is called ”symplectic basis” of (E,ω) if the following conditions hold:

ω(ei, ej) = ω(fi, fj) = 0

ω(ei, fj) = δij

Definition 5: The set of all symplectic automorphisms (E,ω)→ (E,ω) forms a group
Sp(E,ω).

Proposition: Let (E,ω) and (E ′, ω′) be two symplectic spaces of same dimension 2n.
The symplectic groups Sp(E,ω) and Sp(E ′, ω′) are isomorphic.

Proof:(It’s not so hard but did not present it in class and so I won’t put it in here.)

3 Williamson’s Theorem

The idea behind this theorem is fairly simple: We can use the members of symplectic group
(i.e. Sp(n,R)) to diagonalize any positive-definite symmetric matrix. This should come
as no surprise because we have been using orthogonal matrices to diagonalize symmetric
matrices so far. Just as orthogonal matrices preserve Euclidean length I, the symplectic
matrices preserve J . As we shall see, the action of J is somehow like imaginary i in complex
plane. So, we can regard an orthogonal similarity transformation as an action mapping
”complex matrices” onto the ”real line” by preserving I and symplectic transformation
as an action mapping ”complex matrices” onto imaginary line by preserving J .
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The theorem is as follows:
Williamson’s Theorem: Let M be a positive-definite symmetric real 2n× 2n matrix.

(i) There exists S ∈ Sp(n) such that:

STMS =

[
Λ 0
0 Λ

]
with Λ being a diagonal matrix of rank n.
the diagonal entries λj of Λ can be defined using the condition:

±iλj is an eigenvalue of JM

(ii) The sequence λ1, ..., λn does not depend, up to a reordering of its terms, on the
choice of S diagonalizing M .

Proof: We first examine the case of M = I. We note that J itself is in the Sp(n,R):

JT =

[
0 −In
In 0

]
= −J

JTJJ = −JJ2 = J

So, we can easily see that this is the matrix that diagonalizes I:

JT IJ = −JIJ = −J2 = I

We see that the eigenvalues of JI = J are ±i which is what we expected them to
be. This indicates that it would be a good idea to search for complex eigenvalues and
eigenvectors of JM in C2n. Let us define:

〈z, z′〉M = 〈Mz, z′〉

Since both 〈., .〉M and symplectic form are nondegenerate, we can find a unique invert-
ible matrix K of order 2n such that:

〈z,Kz′〉M = σ(z, z′)

for all z and z′. That matrix satisfies:

KTM = J = −MK

Since skew-product is antisymmetric we must haveK = −KM whereKM = −M−1KTM
is the transpose of K with respect of 〈., .〉M . It follows that eigenvalues of K = −M−1J
are of the type ±iλj, λj > 0, and hence those of JM−1 are ±iλ−1j .The corresponding
eigenvectors occurring in conjugate pairs e′j + if ′j we thus obtain a 〈, , .〉M -orthonormal
basis {e′j, f ′j}1≤i,j≤n of R2n

z such that Ke′i = λif
′
i and Kf ′j = −λje′j. Note that:

K2e′i = −λ2e′i
K2f ′j = −λ2f ′j
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And the vectors of the basis {e′j, f ′j}1≤i,j≤n satisfy the following relations:

σ(e′i, e
′
j) = 〈e′i, Ke′j〉M = λj〈e′i, f ′j〉M = 0

σ(f ′i , f
′
j) = 〈f ′i , Kf ′j〉M = −λj〈f ′i , e′j〉M = 0

σ(f ′i , e
′
j) = 〈f ′i , Ke′j〉M = λj〈f ′i , e′j〉M = −λiδij

We set ei = λ
−1/2
i e′i and fj = λ

−1/2
j f ′j so the basis {e, f}1≤i,j≤n would be symplec-

tic. Now let S be the element of Sp(n) that maps the canonical symplectic basis to
{e, f}1≤i,j≤n. The 〈., .〉M -orthogonality of {e, f}1≤i,j≤n implies diagonalization of STMS
with Λ = diag[λ1...λn]. To prove the uniqueness we just have to show that if there ex-
ist S ∈ Sp(n) such that STLS = L′ with L = diag[Λ,Λ] and L′ = diag[Λ′,Λ′] then
Λ = Λ′. Since S is symplectic we have STJS = J and hence STLS = L′ is equivalent
to S−1JLS = JL′ from which follows JL and JL′ have the same eigenvalues. These
eigenvalues are precisely the complex numbers ±i/λj

So far we have seen that any symmetric matrix can be decomposed using symplectic
matrices. We also know that the diagonal elements are bigger than zero. All the sym-
plectic transformations that diagonalize a symmetric matrix produce the same diagonal
elements up to the ordering. So we can make a convention and always use a decreasing
order:

Definition: With the ordering convention:

λσ,1 ≥ λσ,2 ≥ ... ≥ λσ,n

(λσ,1, λσ,2, ..., λσ,n) is called ”symplectic spectrum of M” and is denoted by Specσ(M).
Symplectic spectrum of a matrix M has various properties and we can prove some

propositions about it. In what follows, I will state and prove a proposition together with
a theorem about it:

Proposition: Let Specσ(M) = (λσ,1, ..., λσ,n) be the symplectic spectrum of M.

(i)Specσ(M) is a symplectic invariant:

Specσ(STMS) = Specσ(M) for every S ∈ Sp(n)

(ii) the sequence (λ−1σ,1, ..., λ
−1
σ,n) is the symplectic spectrum of M−1

Specσ(M−1) = (Specσ(M))−1

Proof: We remember from Williamson’s theorem that the diagonal form of a matrix
is unique up to reordering. So part (i) is the immediate consequence of the definition of
the spectrum of M.

We note that the eigenvalues of JM is the same as the eigenvalues of M
1
2JM

1
2 also

the eigenvalues of JM−1 is the same as M− 1
2JM− 1

2 . We have:

M− 1
2JM− 1

2M
1
2JM

1
2 = M− 1

2J2M
1
2 = −M− 1

2M
1
2 = −I
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So:

M
1
2JM

1
2 = −(M− 1

2JM− 1
2 )−1

So we can we can get the eigenvalues of JM−1 from JM by the transformation t→ −1
t

and this is what we wanted to prove since the symplectic spectra comes from taking the
modulii of these eigenvalues.

Theorem:Let M and M ′ be two symmetric positive definite matrices of same dimen-
sion. We have:

M ≤M ′ ⇒ Specσ(M) ≤ Specσ(M ′)

Proof: There are a few point to be reviewed about inequality of matrices before getting
into actual proof. First, when two matrices A and B have the same eigenvalues we write
A ' B. When the eigenvalues of A are smaller than or equal to those of B (with a
common ordering) we write A ≤ B. When A or B are invertilble we have AB ' BA.
Keeping all of this in mind, the theorem is equivalent to:

M ≤M ′ ⇒ (JM ′)2 ≤ (JM)2

because Specσ(M) is the modulii of the diagonal form of JM in which diagonal elements
are ordered in decreasing order. The inequality M ≤M ′ is equivalent to zTMz ≤ zTM ′z
for all z ∈ R2n. So, we can replace z in zTMz ≤ zTM ′z by (JM

1
2 )z and (JM ′ 1

2 )z. Noting
that JT = −J we have:

((JM
1
2 )z)TM(JM

1
2 )z ≤ ((JM

1
2 )z)TM ′(JM

1
2 )z

→ ((JM
1
2 ))TM(JM

1
2 ) ≤ ((JM

1
2 ))TM ′(JM

1
2 )

→M
1
2JM ′JM

1
2 ≤M

1
2JMJM

1
2

Similarly:

M ′ 1
2JM ′JM ′ 1

2 ≤M ′ 1
2JMJM ′ 1

2

We note that:

M
1
2JM ′JM

1
2 'MJM ′J

M ′ 1
2JMJM ′ 1

2 'M ′JMJ 'MJM ′J

Now we can rewrite the inequalities:

MJM ′J ≤M
1
2JMJM

1
2

M ′ 1
2JM ′JM ′ 1

2 ≤MJM ′J
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So we have:

M ′ 1
2JM ′JM ′ 1

2 ≤M
1
2JMJM

1
2

Now we have:

M ′ 1
2JM ′JM ′ 1

2 ' (M ′J)2

M
1
2JMJM

1
2 ' (MJ)2

Which yield to:

(M ′J)2 ≤ (MJ)2

Which is what we wanted to prove.

4 Back to the Motivation

Now with the Williamson’s theorem being said, we can look back to the problem of simple
harmonic oscillator of the beginning of the lecture notes. It is important to note that the
Hamiltonian itself is in the form of a diagonal matrix:

H(p, q) =
p2

2m
+

1

2
mω2x2 =

ω

2

[
p x

] [ 1
γ

0

0 γ

] [
p
x

]
= 〈z,Mz〉

with γ = ω
2
, M =

[
1
γ

0

0 γ

]
and z =

[
p
x

]
Williamson’s theorem tells us that there exist a matrix S ∈ Sp(2) such that

STMS = I

with ±iλ being the eigenvalues of JM . But we note that:

JM =

[
0 −γ
1
γ

0

]
Which (up to a proportionality constant) is the same as the matrix that we were trying

to diagonalize in the first section. Calculating the eigenvalues of JM we see that they
are ±i. It is also easy to show that the following symplectic matrix diagonalizes M with
diagonal elements being equal to 1 as we expected from Williamson’s theorem:

S =

[
γ1/2 0

0 γ−1/2

]
If we go on and diagonalize JM (as we wanted to in the first section) we see that since

JM is not a normal matrix, we can’t diagonalize it using a unitary similarity transforma-
tion. But there exist a similarity transformation such that:
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PJMP−1 = (JM)d

One choice for such a P is:

P =

[ i
γ

1
−i
γ

1

]
So:

PJMP−1 =
1

detP

[
2γ 0
0 −2γ

]
But one interesting fact here is when we apply P on the position and momentum we

see:

P

[
p
x

]
=

[
x+ ip

γ

x− ip
γ

]
This now coordinate system in which Hamiltonian equation of motion of S.H.O decouples,
is (up to a normalization constant) the classical counterparts of ladder operators a and
a†. If we try to solve quantum mechanical S.H.O in Heisenberg picture, we can see that
equations of motion for these (now time dependent operators) are decoupled.
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