MATH 541 HOMEWORK 1

FALL 2018

Throughout this assignment, for any $d \geq 1$ (an integer) let M_{d} be the collection of $d \times d$ matrices with complex entries. Said differently, let M_{d} denote the algebra of observables associated to a quantum system with an n-dimensional Hilbert space of states.
(1) Let V be a complex inner product space.
i) Show that V is a normed space when V is equipped with the norm induced by the inner product, i.e. show that the map $\|\cdot\|: V \rightarrow \mathbb{R}$ given by

$$
\|x\|=\sqrt{\langle x, x\rangle} \quad \text { for all } x \in V
$$

is a norm on V.
ii) Show that every finite-dimensional, complex inner product space is a Hilbert space when equipped with the norm from part i). In particular, show that, in this finite-dimensional case, the norm discussed above is complete.
(2) i) Show that the map $\langle\cdot, \cdot\rangle_{\mathrm{HS}}: M_{d} \times M_{d} \rightarrow \mathbb{C}$, with $(A, B) \mapsto$ $\langle A, B\rangle_{\mathrm{HS}}$, given by

$$
\langle A, B\rangle_{\mathrm{HS}}=\operatorname{Tr}\left[A^{*} B\right] \quad \text { for all } A, B \in M_{d},
$$

defines an inner-product on M_{d}. The map $\langle\cdot, \cdot\rangle_{\mathrm{HS}}$ is called the Hilbert-Schmidt inner product on M_{d}.
ii) Show that the norm induced by this inner-product, called the Hilbert-Schmidt norm, satisfies the following: For any orthonormal basis $\left\{u_{j}\right\}_{j=1}^{d}$ of \mathbb{C}^{d}, one has that

$$
\|A\|_{\mathrm{HS}}^{2}=\sum_{j=1}^{d}\left\|A u_{j}\right\|^{2} .
$$

iii) Show that

$$
\|A\| \leq \underset{1}{\leq}\|A\|_{\mathrm{HS}}
$$

where the quantity on the left-hand-side above is the operator norm of $A \in M_{d}$, i.e.

$$
\|A\|=\sup _{\substack{\psi \in \mathbb{C}^{d}: \\ \psi \neq 0}} \frac{\|A \psi\|}{\|\psi\|}
$$

(3) i) Show that for every state $\omega: M_{d} \rightarrow \mathbb{C}$, i.e., any normalized, positive linear functional on the observable algebra, there exists a $d \times d$ density matrix ρ, i.e. ρ is non-negative and has trace equal to one, for which

$$
\omega(A)=\operatorname{Tr}[\rho A] \text { for all } A \in M_{d}
$$

ii) Discuss uniqueness of the density matrix ρ found above.
iii) Show that ω is an extreme point of the set of states on M_{d} if and only if ω is a vector state.
(4) i) Show that $\rho \in M_{2}$ is a density matrix if and only if

$$
\rho=\left(\begin{array}{cc}
r & \mu \\
\bar{\mu} & 1-r
\end{array}\right)
$$

for some $r \in[0,1]$ and $\mu \in \mathbb{C}$ satisfying

$$
|\mu|^{2} \leq r(1-r)
$$

ii) Show that $\rho \in M_{2}$ is a density matrix if and only if

$$
\rho=\frac{1}{2} \mathbb{1}+\vec{x} \cdot \vec{\sigma}
$$

with $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ satisfying $\|\vec{x}\| \leq 1$.
iii) Using the notation from part ii) above, show that the pure states on M_{2} are in one-to-one correspondence with the unit vectors $\vec{x} \in \mathbb{R}^{3}$.
(5) We say that $A \in M_{d}$ is non-negative if

$$
\langle x, A x\rangle \geq 0 \quad \text { for all } x \in \mathbb{C}^{d}
$$

i) Show that $A \in M_{d}$ is non-negative if and only if there is some $B \in M_{d}$ for which $A=B^{*} B$. Conclude that any non-negative $A \in M_{d}$ is self-adjoint with non-negative eigenvalues.

We say that $A \in M_{d}$ is strictly positive if

$$
\langle x, A x\rangle>0 \quad \text { for all } x \in \mathbb{C}^{d} \backslash\{0\} .
$$

ii) Show that $A \in M_{d}$ is strictly positive if and only if $A \in M_{d}$ is non-negative and invertible.

