MATH 541 HOMEWORK 2

FALL 2018

(1) Consider the collection of functions

$$\mathcal{H} = \{a : \mathbb{N}^2 \to \mathbb{C} \text{ with } \sum_{n,m \ge 1} |a(n,m)|^2 < \infty\}$$

This set is often written as $\mathcal{H} = \ell^2(\mathbb{N}^2)$. (The letter a is used for the functions since they are often thought of as sequences . . .) The goal of this exercise is to show that \mathcal{H} is a Hilbert space with an explicit orthonormal basis.

i) Show that \mathcal{H} is a complex vector space under the usual rules of arithmetic for functions. Moreover, show that

$$\langle a, b \rangle = \sum_{n,m \ge 1} \overline{a(n,m)} b(n,m)$$
 for all $a, b \in \mathcal{H}$

is an inner product on \mathcal{H} .

- ii) Show that \mathcal{H} , equipped as above, is a Hilbert space.
- iii) Show that the collection of functions $\{e_{jk}\}_{j,k\geq 1}$ with

$$e_{jk}(n,m) = \delta_{jn} \cdot \delta_{km}$$

is an orthonormal basis of \mathcal{H} .

(2) Let \mathcal{H} be a separable Hilbert space and $\{e_j\}_{j\geq 1} \subset \mathcal{H}$ be an orthonormal set. Prove that $\{e_j\}_{j\geq 1}$ is an orthonormal bases of \mathcal{H} if and only if

$$\mathcal{H} = \overline{\operatorname{span}(e_j : j \ge 1)}$$
.

(3) Let \mathcal{H}_1 and \mathcal{H}_2 be separable Hilbert spaces. Let $M \subset \mathcal{H}_1 \otimes \mathcal{H}_2$ be the following dense subspace:

$$M = \overline{\operatorname{span}(\phi \otimes \psi : \phi \in \mathcal{H}_1 \text{ and } \psi \in \mathcal{H}_2)}$$
.

We showed in class that the linear map $C_{1,B}: M \to \mathcal{H}_1 \otimes \mathcal{H}_2$ defined by requiring

$$C_{\mathbb{I},B}(\phi \otimes \psi) = \phi \otimes B\psi$$
 for all $\phi \in \mathcal{H}_1$ and $\psi \in \mathcal{H}_2$

2 FALL 2018

is well-defined. Show that $||C_{1,B}|| \le ||B||$ and carefully describe each line in the estimate.

- (4) Let \mathcal{H}_1 and \mathcal{H}_2 be separable Hilbert spaces.
 - i) Show that the map $(\cdot, \cdot) : \mathcal{B}(\mathcal{H}_1) \times \mathcal{B}(\mathcal{H}_2) \to \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ with $(A, B) \mapsto A \otimes B$ is bilinear.
 - ii) Show that if $A_n \to A$ in $\mathcal{B}(\mathcal{H}_1)$ and $B_n \to \mathcal{B}$ in $\mathcal{B}(\mathcal{H}_2)$, then $A_n \otimes B_n \to A \otimes B$ in $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$.
 - iii) Let $A \in \mathcal{B}(\mathcal{H}_1)$ and $B \in \mathcal{B}(\mathcal{H}_2)$. Show that $A \otimes B$ is boundedly invertible if and only if A and B are both boundedly invertible.

Recall: $A \in \mathcal{B}(\mathcal{H})$ is boundedly invertible if A^{-1} exists and $A^{-1} \in \mathcal{B}(\mathcal{H})$.

Hint: You may want to use that: If $A \in \mathcal{B}(\mathcal{H})$ is boundedly invertible then there is some positive number C for which

$$||x|| \le C||Ax||$$
 for all $x \in \mathcal{H}$.

- (5) Let $A \in \mathcal{B}(\mathbb{C}^m)$ and $B \in \mathcal{B}(\mathbb{C}^n)$. We proved in class that $||A \otimes B|| = ||A|| ||B||$ where the norm here is the operator norm. Check that the following is also true:
 - i) For A and B as above,

$$Tr[A \otimes B] = Tr[A]Tr[B]$$
.

ii) For A and B as above,

$$||A \otimes B||_1 = ||A||_1 ||B||_1$$
.

iii) For A and B as above,

$$||A \otimes B||_2 = ||A||_2 ||B||_2$$
.

Recall: For any matrix $A \in \mathcal{B}(\mathbb{C}^n)$, the trace norm of A, which we denote by $||A||_1$, is given by

$$||A||_1 = \sum_{j=1}^n \sigma_j(A)$$

where the numbers being added above are the singular values of A. Moreover, for any matrix $A \in \mathcal{B}(\mathbb{C}^n)$, the Hilbert-Schmidt norm of A, which we denote by $||A||_2$, is given by

$$||A||_2 = \sqrt{\text{Tr}[A^*A]}.$$

Using the above as a definition, it is not hard to check that

$$||A||_2 = \sqrt{\sum_{j=1}^n \sigma_j(A)^2}.$$