MATH 541 HOMEWORK 2

FALL 2018
(1) Consider the collection of functions

$$
\mathcal{H}=\left\{a: \mathbb{N}^{2} \rightarrow \mathbb{C} \text { with } \sum_{n, m \geq 1}|a(n, m)|^{2}<\infty\right\}
$$

This set is often written as $\mathcal{H}=\ell^{2}\left(\mathbb{N}^{2}\right)$. (The letter a is used for the functions since they are often thought of as sequences . . .) The goal of this exercise is to show that \mathcal{H} is a Hilbert space with an explicit orthonormal basis.
i) Show that \mathcal{H} is a complex vector space under the usual rules of arithmetic for functions. Moreover, show that

$$
\langle a, b\rangle=\sum_{n, m \geq 1} \overline{a(n, m)} b(n, m) \quad \text { for all } a, b \in \mathcal{H}
$$

is an inner product on \mathcal{H}.
ii) Show that \mathcal{H}, equipped as above, is a Hilbert space.
iii) Show that the collection of functions $\left\{e_{j k}\right\}_{j, k \geq 1}$ with

$$
e_{j k}(n, m)=\delta_{j n} \cdot \delta_{k m}
$$

is an orthonormal basis of \mathcal{H}.
(2) Let \mathcal{H} be a separable Hilbert space and $\left\{e_{j}\right\}_{j \geq 1} \subset \mathcal{H}$ be an orthonormal set. Prove that $\left\{e_{j}\right\}_{j \geq 1}$ is an orthonormal bases of \mathcal{H} if and only if

$$
\mathcal{H}=\overline{\operatorname{span}\left(e_{j}: j \geq 1\right)}
$$

(3) Let \mathcal{H}_{1} and \mathcal{H}_{2} be separable Hilbert spaces. Let $M \subset \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ be the following dense subspace:

$$
M=\overline{\operatorname{span}\left(\phi \otimes \psi: \phi \in \mathcal{H}_{1} \text { and } \psi \in \mathcal{H}_{2}\right)}
$$

We showed in class that the linear map $C_{\mathbb{1}, B}: M \rightarrow \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ defined by requiring

$$
C_{\mathbb{1}, B}(\phi \otimes \psi)=\phi \otimes B \psi \quad \text { for all } \phi \in \mathcal{H}_{1} \text { and } \psi \in \mathcal{H}_{2}
$$

is well-defined. Show that $\left\|C_{\mathbb{1}, B}\right\| \leq\|B\|$ and carefully describe each line in the estimate.
(4) Let \mathcal{H}_{1} and \mathcal{H}_{2} be separable Hilbert spaces.
i) Show that the map $(\cdot, \cdot): \mathcal{B}\left(\mathcal{H}_{1}\right) \times \mathcal{B}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ with $(A, B) \mapsto A \otimes B$ is bilinear.
ii) Show that if $A_{n} \rightarrow A$ in $\mathcal{B}\left(\mathcal{H}_{1}\right)$ and $B_{n} \rightarrow \mathcal{B}$ in $\mathcal{B}\left(\mathcal{H}_{2}\right)$, then $A_{n} \otimes B_{n} \rightarrow A \otimes B$ in $\mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$.
iii) Let $A \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ and $B \in \mathcal{B}\left(\mathcal{H}_{2}\right)$. Show that $A \otimes B$ is boundedly invertible if and only if A and B are both boundedly invertible.

Recall: $A \in \mathcal{B}(\mathcal{H})$ is boundedly invertible if A^{-1} exists and $A^{-1} \in$ $\mathcal{B}(\mathcal{H})$.

Hint: You may want to use that: If $A \in \mathcal{B}(\mathcal{H})$ is boundedly invertible then there is some positive number C for which

$$
\|x\| \leq C\|A x\| \quad \text { for all } x \in \mathcal{H} .
$$

(5) Let $A \in \mathcal{B}\left(\mathbb{C}^{m}\right)$ and $B \in \mathcal{B}\left(\mathbb{C}^{n}\right)$. We proved in class that $\|A \otimes B\|=$ $\|A\|\|B\|$ where the norm here is the operator norm. Check that the following is also true:
i) For A and B as above,

$$
\operatorname{Tr}[A \otimes B]=\operatorname{Tr}[A] \operatorname{Tr}[B] .
$$

ii) For A and B as above,

$$
\|A \otimes B\|_{1}=\|A\|_{1}\|B\|_{1} .
$$

iii) For A and B as above,

$$
\|A \otimes B\|_{2}=\|A\|_{2}\|B\|_{2}
$$

Recall: For any matrix $A \in \mathcal{B}\left(\mathbb{C}^{n}\right)$, the trace norm of A, which we denote by $\|A\|_{1}$, is given by

$$
\|A\|_{1}=\sum_{j=1}^{n} \sigma_{j}(A)
$$

where the numbers being added above are the singular values of A. Moreover, for any matrix $A \in \mathcal{B}\left(\mathbb{C}^{n}\right)$, the Hilbert-Schmidt norm of A, which we denote by $\|A\|_{2}$, is given by

$$
\|A\|_{2}=\sqrt{\operatorname{Tr}\left[A^{*} A\right]}
$$

Using the above as a definition, it is not hard to check that

$$
\|A\|_{2}=\sqrt{\sum_{j=1}^{n} \sigma_{j}(A)^{2}}
$$

