MATH 541 HOMEWORK 3

FALL 2018
(1) Let \mathcal{H}_{1} and \mathcal{H}_{2} be finite-dimensional (non-zero) complex Hilbert spaces. Let $A \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$.
i) Show that for any $C, D \in \mathcal{B}\left(\mathcal{H}_{2}\right)$, one has that

$$
\operatorname{Tr}_{\mathcal{H}_{1}}[(\mathbb{1} \otimes C) A(\mathbb{1} \otimes D)]=C \operatorname{Tr}_{\mathcal{H}_{1}}[A] D
$$

ii) Show that the partial traces preserve trace in the sense that:

$$
\operatorname{Tr}\left[\operatorname{Tr}_{\mathcal{H}_{2}}[A]\right]=\operatorname{Tr}[A]=\operatorname{Tr}\left[\operatorname{Tr}_{\mathcal{H}_{1}}[A]\right]
$$

(2) Let $m, n \geq 1$ be integers and set $\mathcal{H}_{1}=\mathbb{C}^{m}$ and $\mathcal{H}_{2}=\mathbb{C}^{n}$.
i) Let $A \in M_{m}$ and $B \in M_{n}$. Show that if A and B are both non-negative, then $A \otimes B \in M_{n m}$ is non-negative as well.
ii) Let $A \in M_{m}$ and $B \in M_{n}$. Show that if A and B are both strictly positive, then $A \otimes B \in M_{n m}$ is strictly positive as well.
iii) Let $A \in M_{m}$. Show that A is non-negative if and only if $\operatorname{Tr}[A B] \geq$ 0 for all non-negative $B \in M_{m}$.
iv) Show that the partial traces preserve non-negativity: Let $A \in$ $\mathcal{B}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right) \equiv M_{m n}$. Show that if A is non-negative, then both $A_{1}=\operatorname{Tr}_{\mathbb{C}^{n}}[A] \in M_{m}$ and $A_{2}=\operatorname{Tr}_{\mathbb{C}^{m}}[A] \in M_{n}$ are non-negative as well.
(3) Let ρ be a density matrix on a finite dimensional Hilbert space \mathcal{H}.
i) Show that ρ is mixed if and only if $\operatorname{Tr}\left[\rho^{2}\right]<1$.
ii) Suppose $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and let ρ be the density matrix corresponding to a pure state on \mathcal{H}. Show that both $\rho_{1}=\operatorname{Tr}_{\mathcal{H}_{2}}[\rho]$ and $\rho_{2}=\operatorname{Tr}_{\mathcal{H}_{1}}[\rho]$ are density matrices corresponding to pure states if and only if ρ corresponds to a product state. Note: Since ρ is assumed to be the density matrix corresponding to a pure state, $\rho=|\psi\rangle\langle\psi|$ and so ρ corresponds to a product state means that $\psi=\psi_{1} \otimes \psi_{2}$.
iii) Let $\mathcal{H}=\mathbb{C}^{n}$ and take $\rho \in M_{n}$ to be any density matrix. Let $\left\{e_{j}\right\}_{j=1}^{n}$ be an orthonormal basis of \mathbb{C}^{n} and take $\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ to be the vector given by

$$
\psi=\sum_{j=1}^{n} e_{j} \otimes \rho^{1 / 2} e_{j} .
$$

Denote by $\tilde{\rho}=|\psi\rangle\langle\psi|$ and check that $\tilde{\rho}$ is pure state on $\mathcal{B}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$, i.e. check that ψ is a unit vector. Show that

$$
\tilde{\rho}_{2}=\operatorname{Tr}_{\mathbb{C}^{n}}[\tilde{\rho}]=\rho
$$

and thus any density matrix can be found as the partial trace of the density matrix corresponding to a pure state. $\tilde{\rho}$ is sometimes referred to as the purification of ρ.

Hint: For any $B \in M_{n}$, calculate

$$
\operatorname{Tr}[\tilde{\rho}(\mathbb{1} \otimes B)]
$$

(4) Let \mathcal{H}_{1} and \mathcal{H}_{2} be finite-dimensional (non-zero) complex Hilbert spaces and suppose $n=\operatorname{dim}\left(\mathcal{H}_{1}\right)=\operatorname{dim}\left(\mathcal{H}_{2}\right)$. Let ψ be a unit vector in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and $\rho=|\psi\rangle\langle\psi|$ be the corresponding density matrix. Show that the following are equivalent:
i) Either ρ_{1} or ρ_{2} is maximally mixed, and
ii) $\psi=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} e_{j} \otimes f_{j}$ where $\left\{e_{j}\right\}$ and $\left\{f_{k}\right\}$ are orthonormal bases of \mathcal{H}_{1} and \mathcal{H}_{2} respectively.

Unit vectors ψ which satisfy either i) or ii) above are called maximally entangled.
(5) Let \mathcal{H}_{1} and \mathcal{H}_{2} be finite-dimensional (non-zero) complex Hilbert spaces. Let ρ be a density matrix on $\mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$. Denote by $S_{E}(\rho)$ the entanglement entropy of ρ.
i) Show that $S_{E}(\rho)=0$ if and only if ρ corresponds to a separable state.
ii) Show that

$$
0 \leq S_{E}(\rho) \leq \min \left[\ln \left(\operatorname{dim}\left(\mathcal{H}_{1}\right)\right), \ln \left(\operatorname{dim}\left(\mathcal{H}_{2}\right)\right)\right]
$$

Hint: First check that both of the above are true when ρ corresponds to a pure state. Then, show that the above remains true for when ρ is mixed.
(6) Let \mathcal{H}_{1} and \mathcal{H}_{2} be finite-dimensional (non-zero) complex Hilbert spaces with orthonormal bases $\left\{e_{j}\right\}_{j=1}^{m}$ and $\left\{f_{k}\right\}_{k=1}^{n}$ respectively. Let $\psi \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ be a unit vector and denote by $A \in \mathbb{C}^{m \times n}$ the matrix of coefficients of ψ in the basis $\left\{e_{j} \otimes f_{k}\right\}_{j, k \geq 1}$, i.e. write

$$
\psi=\sum_{j, k} \psi_{j k} e_{j} \otimes f_{k} \quad \text { and set } \quad A=\left\{\psi_{j k}\right\} \in \mathbb{C}^{m \times n}
$$

Denote by $\rho=|\psi\rangle\langle\psi|$ the density matrix associated to ψ.
i) Show that $\rho_{1}=A A^{*}$.
ii) Show that $\rho_{2}=A^{*} A$.
iii) Conclude that $S_{E}(\rho)=S\left(\rho_{1}\right)=S\left(\rho_{2}\right)=-\sum_{n} \sigma_{n}(A)^{2} \ln \left(\sigma_{n}(A)^{2}\right)$.

