MATH 541 HOMEWORK 4

FALL 2018

- (1) Let \mathcal{A} be a unital C^* -algebra. Let α be an automorphism of \mathcal{A} , i.e. α is a *-isomorphism from \mathcal{A} to \mathcal{A} . i) Show that $\alpha(1) = 1$.

ii) Show that $\|\alpha(A)\| = \|A\|$ for all $A \in \mathcal{A}$. In class, this was stated as a corollary; prove it.

- (2) Let α be a linear map $M_d \to M_d$. Show that α is an automorphism of M_d if and only if there exists a unitary $U \in M_d$, such that $\alpha(A) =$ U^*AU , for all $A \in M_d$.
- (3) Let \mathcal{A} be a unital C^* -algebra. For each $n \geq 1$, let α_n be a linear map $\alpha_n : \mathcal{A} \to \mathcal{A}$. The sequence $\{\alpha_n\}_{n \geq 1}$ is said to converge strongly to a map $\alpha : \mathcal{A} \to \mathcal{A}$ if and only if

$$\lim_{n \to \infty} \alpha_n(A) = \alpha(A) \quad \text{for all } A \in \mathcal{A} \,.$$

i) Show that: if a sequence of automorphisms of \mathcal{A} , denoted by $\{\alpha_n\}$, converges strongly to a map α , then α is an automorphism of \mathcal{A} . ii) Show that: if a sequence of automorphisms of \mathcal{A} , denoted by $\{\alpha_n\}$, satisfies

$$\lim_{n \to \infty} \alpha_n(A) = \alpha(A) \quad \text{for all } A \in \mathcal{A}_0$$

and $\mathcal{A}_0 \subset \mathcal{A}$ is a dense subset, then $\{\alpha_n\}_{n\geq 1}$ converges strongly to α . (Hence, α is an automorphism by i) above.)

iii) Let $\{\alpha_n\}$ be a sequence of automorphisms of \mathcal{A} . Show that: $\{\alpha_n\}$ converges strongly to the map α if and only if $\{\alpha_n^{-1}\}$ converges strongly to the map α^{-1} .

FALL 2018

(4) Let \mathcal{H} be a complex Hilbert space and $I \subset \mathbb{R}$ be an open interval. i) Let $A, B : I \to \mathcal{B}(\mathcal{H})$ be continuous maps. Show that $C : I \times I \to \mathcal{B}(\mathcal{H})$ defined by

$$C(s,t) = A(s)B(t)$$
 for all $s, t \in I$

is jointly continuous, i.e. let $(s_0, t_0) \in I \times I$ and show that

$$\lim_{(s,t)\to(s_0,t_0)} \|C(s,t) - C(s_0,t_0)\| = 0.$$

ii) Let $A, B : I \to \mathcal{B}(\mathcal{H})$ be differentiable maps. Show that $C : I \times I \to \mathcal{B}(\mathcal{H})$ defined by

$$C(s,t) = A(s)B(t)$$
 for all $s, t \in I$

is separately differentiable, i.e. for each fixed $s \in I$, the map $t \mapsto C(s,t)$ is differentiable and for each fixed $t \in I$, the map $s \mapsto C(s,t)$ is differentiable.

iii) Let $A, B : I \to \mathcal{B}(\mathcal{H})$ be differentiable maps. Show that $C : I \to \mathcal{B}(\mathcal{H})$ defined by

$$C(t) = A(t)B(t)$$
 for all $t \in I$

is differentiable and find a formula for its derivative.

(5) Let X be a Banach space and $I = [a, b] \subset \mathbb{R}$ be a compact interval. Consider the set of functions

$$\mathcal{F}([a,b],X) = \{f: [a,b] \to X \, | \, \|f\|_{\infty} = \sup_{a \le t \le b} \|f(t)\| < \infty\} \, .$$

It is easy to see that this set of functions is a vector space under the usual operations of arithmetic. Check that $\|\cdot\|_{\infty}$ is a norm on $\mathcal{F}([a, b], X)$ and that (with respect to this norm) $\mathcal{F}([a, b], X)$ is a Banach space.

(6) Let X be a Banach space and $I = [a, b] \subset \mathbb{R}$ be a compact interval. Denote by $\mathcal{S}([a, b], X) \subset \mathcal{F}([a, b], X)$ the set of step-functions on X, i.e. $f \in \mathcal{S}([a, b], X)$ if and only if there is an integer $n \geq 1$, a partition $\{t_j\}_{j=0}^n$ of [a, b], and a collection of points $\{x_j\}_{j=0}^{n-1}$ with $x_j \in X$ for all $0 \leq j \leq n-1$ such that

$$f(t) = x_0 \chi_{[a,t_1]}(t) + \sum_{j=1}^{n-1} x_j \chi_{(t_j,t_{j-1}]}(t) \quad \text{for all } t \in [a,b].$$

Show that the map $I: \mathcal{S}([a, b], X) \to X$ given by

$$I(f) = \sum_{j=0}^{n-1} (t_{j+1} - t_j) x_j$$

2

3

is a well-defined, linear map. This value $I(f) \in X$ is referred to as the Riemann integral of f in X. Note: Well-defined means that I(f) is independent of the representation of f as a step function.

(7) Let X be a Banach space and I = [a, b] ⊂ ℝ be a compact interval. Let S̄([a, b], X) denote the norm closure of the subspace of step-functions S([a, b], X) ⊂ F̄([a, b], X) defined in the previous problems. Show that the Riemann integral defined in class satisfies:
i) For any a ≤ α < β ≤ b and each f ∈ S̄([a, b], X),

$$\left|\int_{\alpha}^{\beta} f(t) dt\right| \leq (\beta - \alpha) \sup\{\|f(t)\| : \alpha \leq t \leq \beta\}.$$

ii) For any $\alpha, \beta, \gamma \in [a, b]$ and each $f \in \overline{\mathcal{S}}([a, b], X)$,

$$\int_{\alpha}^{\beta} f(t) dt = \int_{\alpha}^{\gamma} f(t) dt + \int_{\gamma}^{\beta} f(t) dt.$$

iii) Show that for each $f \in \overline{\mathcal{S}}([a, b], X)$, the function $G : [a, b] \to X$ defined by setting

$$G(x) = \int_{a}^{x} f(t) dt \quad \text{for all } x \in [a, b]$$

is continuous, and moreover, G(a) = 0.

iv) Let Y be another Banach space and suppose $T \in \mathcal{B}(X, Y)$; the set of bounded linear maps from X to Y. Show that for each $f \in \overline{\mathcal{S}}([a, b], X)$ the image $Tf \in \overline{\mathcal{S}}([a, b], Y)$ and moreover,

$$T\left(\int_{a}^{b} f(t) dt\right) = \int_{a}^{b} (Tf)(t) dt.$$

v) Show that for each $f \in \overline{\mathcal{S}}([a,b],X)$ the map $t \mapsto ||f(t)||$ is a real-valued element of $\overline{\mathcal{S}}([a,b],\mathbb{C})$ and moreover,

$$\left\|\int_{a}^{b} f(t) dt\right\| \leq \int_{a}^{b} \|f(t)\| dt.$$