MATH 541 HOMEWORK 5

FALL 2018

(1) Consider the metric space (\mathbb{Z}, d) with d(x, y) = |x-y| for all $x, y \in \mathbb{Z}$. Show that for any $a \ge 0$, the function $F_a : [0, \infty) \to (0, \infty)$ given by

 $F_a(r) = e^{-ar}$ for all $r \ge 0$,

is not an *F*-function on (\mathbb{Z}, d) . Note: This result readily generalizes to any (\mathbb{Z}^{ν}, d) with $\nu \geq 1$, but focus in the one-dimensional case.

(2) i) Let $f : [0, \infty) \to [0, \infty)$ be a continuous function. Show that for each $n \ge 1$,

$$\int_0^x \int_0^{t_1} \cdots \int_0^{t_{n-1}} f(t_1) f(t_2) \cdots f(t_n) dt_n dt_{n-1} \cdots dt_1 = \frac{\left(\int_0^x f(t) dt\right)^n}{n!}$$

Hint: Prove this by induction with n = 2 being the base case. ii) Let \mathcal{H} be a Hilbert space and $A : [0, \infty) \to \mathcal{B}(\mathcal{H})$ be normcontinuous. Show that the function $W : [0, \infty) \to \mathcal{B}(\mathcal{H})$ given by

$$W(x) = 1 + \sum_{n=1}^{\infty} \int_0^x \int_0^{t_1} \cdots \int_0^{t_{n-1}} A(t_1) A(t_2) \cdots A(t_n) dt_n dt_{n-1} \cdots dt_1$$

is well-defined for all $x \in [0, \infty)$ and provide an estimate on ||W(x)||.

- (3) In this problem, we investigate the Gronwall inequality.
 - i) Let $[a,b] \subset \mathbb{R}$. Suppose $f : [a,b] \to \mathbb{R}$ is continuous and

$$f(x) \le \alpha + \int_{a}^{x} g(t)f(t) dt$$
 for all $x \in [a, b]$,

where $\alpha \in \mathbb{R}$ and $g : [a, b] \to [0, \infty)$ is continuous. Show that

$$f(x) \le \alpha e^{G(x)}$$
 for all $x \in [a, b]$ where $G(x) = \int_a^x g(t) dt$.

This estimate is called a Gronwall inequality.

ii) Use this Gronwall inequality to show that the time-dependent Schrödinger equation has a unique solution. More precisely, let $I \subset \mathbb{R}$ be an open interval and \mathcal{H} be a complex Hilbert space. Let $H: I \to \mathcal{B}(\mathcal{H})$ satisfy • $H(t)^* = H(t)$ for all $t \in I$, and

• $t \mapsto H(t)$ is norm continuous on I.

Then show that the \mathcal{H} -valued initial value problem: Let $t_0 \in I$ and consider

$$\frac{d}{dt}\psi(t) = -iH(t)\psi(t) \quad \text{with } \psi(t_0) = \psi_0 \in \mathcal{H}$$

has a unique solution.

ii') A very similar argument show that the $\mathcal{B}(\mathcal{H})$ -valued initial value problem:

Let $t_0 \in I$ and consider

$$\frac{d}{dt}U(t) = -iH(t)U(t) \quad \text{with } U(t_0) = \mathbb{1} \in \mathcal{B}(\mathcal{H})$$

also has a unique solution. Check this.

iii) Show that the $\mathcal{B}(\mathcal{H})$ -valued initial value problem corresponding to the norm-preservation lemma has a unique solution. More precisely, let $I \subset \mathbb{R}$ be an open interval and \mathcal{H} be a complex Hilbert space.

Let $A, B: I \to \mathcal{B}(\mathcal{H})$ satisfy

• $A(t)^* = A(t)$ for all $t \in I$, and

• both $t \mapsto A(t)$ and $t \mapsto B(t)$ are norm continuous on I. Then show that the $\mathcal{B}(\mathcal{H})$ -valued initial value problem:

Let $t_0 \in I$ and consider

$$\frac{d}{dt}f(t) = -i[A(t), f(t)] + B(t) \quad \text{with } f(t_0) = f_0 \in \mathcal{B}(\mathcal{H})$$

has a unique solution.