MATH 541 HOMEWORK 5

FALL 2018
(1) Consider the metric space (\mathbb{Z}, d) with $d(x, y)=|x-y|$ for all $x, y \in \mathbb{Z}$. Show that for any $a \geq 0$, the function $F_{a}:[0, \infty) \rightarrow(0, \infty)$ given by

$$
F_{a}(r)=e^{-a r} \quad \text { for all } r \geq 0
$$

is not an F-function on (\mathbb{Z}, d). Note: This result readily generalizes to any $\left(\mathbb{Z}^{\nu}, d\right)$ with $\nu \geq 1$, but focus in the one-dimensional case.
(2) i) Let $f:[0, \infty) \rightarrow[0, \infty)$ be a continuous function.

Show that for each $n \geq 1$,

$$
\int_{0}^{x} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} f\left(t_{1}\right) f\left(t_{2}\right) \cdots f\left(t_{n}\right) d t_{n} d t_{n-1} \cdots d t_{1}=\frac{\left(\int_{0}^{x} f(t) d t\right)^{n}}{n!}
$$

Hint: Prove this by induction with $n=2$ being the base case.
ii) Let \mathcal{H} be a Hilbert space and $A:[0, \infty) \rightarrow \mathcal{B}(\mathcal{H})$ be normcontinuous. Show that the function $W:[0, \infty) \rightarrow \mathcal{B}(\mathcal{H})$ given by
$W(x)=\mathbb{1}+\sum_{n=1}^{\infty} \int_{0}^{x} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} A\left(t_{1}\right) A\left(t_{2}\right) \cdots A\left(t_{n}\right) d t_{n} d t_{n-1} \cdots d t_{1}$
is well-defined for all $x \in[0, \infty)$ and provide an estimate on $\|W(x)\|$.
(3) In this problem, we investigate the Gronwall inequality.
i) Let $[a, b] \subset \mathbb{R}$. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and

$$
f(x) \leq \alpha+\int_{a}^{x} g(t) f(t) d t \quad \text { for all } x \in[a, b]
$$

where $\alpha \in \mathbb{R}$ and $g:[a, b] \rightarrow[0, \infty)$ is continuous. Show that

$$
f(x) \leq \alpha e^{G(x)} \text { for all } x \in[a, b] \text { where } G(x)=\int_{a}^{x} g(t) d t
$$

This estimate is called a Gronwall inequality.
ii) Use this Gronwall inequality to show that the time-dependent Schrödinger equation has a unique solution. More precisely, let $I \subset$ \mathbb{R} be an open interval and \mathcal{H} be a complex Hilbert space.
Let $H: I \rightarrow \mathcal{B}(\mathcal{H})$ satisfy

- $H(t)^{*}=H(t)$ for all $t \in I$, and
- $t \mapsto H(t)$ is norm continuous on I.

Then show that the \mathcal{H}-valued initial value problem:
Let $t_{0} \in I$ and consider

$$
\frac{d}{d t} \psi(t)=-i H(t) \psi(t) \quad \text { with } \psi\left(t_{0}\right)=\psi_{0} \in \mathcal{H}
$$

has a unique solution.
ii') A very similar argument show that the $\mathcal{B}(\mathcal{H})$-valued initial value problem:
Let $t_{0} \in I$ and consider

$$
\frac{d}{d t} U(t)=-i H(t) U(t) \quad \text { with } U\left(t_{0}\right)=\mathbb{1} \in \mathcal{B}(\mathcal{H})
$$

also has a unique solution. Check this.
iii) Show that the $\mathcal{B}(\mathcal{H})$-valued initial value problem corresponding to the norm-preservation lemma has a unique solution. More precisely, let $I \subset \mathbb{R}$ be an open interval and \mathcal{H} be a complex Hilbert space.
Let $A, B: I \rightarrow \mathcal{B}(\mathcal{H})$ satisfy

- $A(t)^{*}=A(t)$ for all $t \in I$, and
- both $t \mapsto A(t)$ and $t \mapsto B(t)$ are norm continuous on I.

Then show that the $\mathcal{B}(\mathcal{H})$-valued initial value problem:
Let $t_{0} \in I$ and consider

$$
\frac{d}{d t} f(t)=-i[A(t), f(t)]+B(t) \quad \text { with } f\left(t_{0}\right)=f_{0} \in \mathcal{B}(\mathcal{H})
$$

has a unique solution.

