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The purpose of these notes is to present a reasonably self-contained expo-
sition of recent results concerning the Birch and Swinnerton-Dyer conjecture
for elliptic curves with complex multiplication. The goal is the following the-
orem.

Theorem. Suppose E is an elliptic curve defined over an imaginary quadrat-
ic field K, with complex multiplication by K, and L(E, s) is the L-function
of E. If L(E, 1) 6= 0 then

(i) E(K) is finite,
(ii) for every prime p > 7 such that E has good reduction above p, the p-part

of the Tate-Shafarevich group of E has the order predicted by the Birch
and Swinnerton-Dyer conjecture.

The first assertion of this theorem was proved by Coates and Wiles in
[CW1]. We will prove this in §10 (Theorem 10.1). A stronger version of (ii)
(with no assumption that E have good reduction above p) was proved in
[Ru2]. The program to prove (ii) was also begun by Coates and Wiles; it can
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now be completed thanks to the recent Euler system machinery of Kolyvagin
[Ko]. This proof will be given in §12, Corollary 12.13 and Theorem 12.19.

The material through §4 is background which was not in the Cetraro lec-
tures but is included here for completeness. In those sections we summarize,
generally with references to [Si] instead of proofs, the basic properties of el-
liptic curves that will be needed later. For more details, including proofs, see
Silverman’s book [Si], Chapter 4 of Shimura’s book [Sh], Lang’s book [La],
or Cassels’ survey article [Ca].

The content of the lectures was essentially §§5-12.

1 Quick Review of Elliptic Curves

1.1 Notation

Suppose F is a field. An elliptic curve E defined over F is a nonsingular curve
defined by a generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

with a1, a2, a3, a4, a6 ∈ F . The points E(F ) have a natural, geometrically-
defined group structure, with the point at infinity O as the identity element.
The discriminant ∆(E) is a polynomial in the ai and the j-invariant j(E)
is a rational function in the ai. (See §III.1 of [Si] for explicit formulas.) The
j-invariant of an elliptic curve depends only on the isomorphism class of that
curve, but the discriminant ∆ depends on the particular Weierstrass model.

Example 1.1. Suppose that E is defined by a Weierstrass equation

y2 = x3 + a2x
2 + a4x + a6

and d ∈ F×. The twist of E by
√

d is the elliptic curve Ed defined by

y2 = x3 + a2dx2 + a4d
2x + a6d

3.

Then (exercise:) Ed is isomorphic to E over the field F (
√

d), ∆(Ed) =
d6∆(E), and j(Ed) = j(E). See also the proof of Corollary 5.22.

1.2 Differentials

See [Si] §II.4 for the definition and basic background on differentials on curves.

Proposition 1.2. Suppose E is an elliptic curve defined by a Weierstrass
equation (1). Then the space of holomorphic differentials on E defined over
F is a one-dimensional vector space over F with basis

ωE =
dx

2y + a1x + a3
.

Further, ωE is invariant under translation by points of E(F̄ ).

Proof. See [Si] Propositions III.1.5 and III.5.1. That ωE is holomorphic is an
exercise, using that ωE is also equal to dy/(3x2 + 2a2x + a4 − a1y). ut
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1.3 Endomorphisms

Definition 1.3. Suppose E is an elliptic curve. An endomorphism of E is a
morphism from E to itself which maps O to O.

An endomorphism of E is also a homomorphism of the abelian group
structure on E (see [Si] Theorem III.4.8).

Example 1.4. For every integer m, multiplication by m on E is a endomor-
phism of E, which we will denote by [m]. If m 6= 0 then the endomorphism
[m] is nonzero; in fact, it has degree m2 and, if m is prime to the characteristic
of F then the kernel of [m] is isomorphic to (Z/mZ)2. (See [Si] Proposition
III.4.2 and Corollary III.6.4.)

Example 1.5. Suppose F is finite, #(F ) = q. Then the map ϕq : (x, y, z) 7→
(xq, yq, zq) is a (purely inseparable) endomorphism of E, called the q-th power
Frobenius morphism.

Definition 1.6. If E is an elliptic curve defined over F , we write EndF (E)
for the ring (under addition and composition) of endomorphisms of E defined
over F . Then EndF (E) has no zero divisors, and by Example 1.4 there is an
injection Z ↪→ EndF (E).

Definition 1.7. Write D(E/F ) for one-dimensional vector space (see Propo-
sition 1.2) of holomorphic differentials on E defined over F . The map φ 7→ φ∗

defines a homomorphism of abelian groups

ι = ιF : EndF (E) → EndF (D(E/F )) ∼= F.

The kernel of ι is the ideal of inseparable endomorphisms. In particular if F
has characteristic zero, then ιF is injective.

Lemma 1.8. Suppose char(F ) = 0, L is a field containing F , and φ ∈
EndL(E). If ιL(φ) ∈ F then φ ∈ EndF (E).

Proof. If σ ∈ Aut(L̄/F ) then

ιL(φσ) = σ(ιL(φ)) = ιL(φ).

Since L has characteristic zero, ιL is injective so we conclude that φσ = φ. ut

Definition 1.9. If φ ∈ EndF (E) we will write E[φ] ⊂ E(F̄ ) for the the
kernel of φ and F (E[φ]) for the extension of F generated by the coordinates
of the points in E[φ]. Note that F (E[φ]) is independent of the choice of a
Weierstrass model of E over F . By [Si] Theorem III.4.10, #(E[φ]) divides
deg(φ), with equality if and only if φ is separable.
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Definition 1.10. If ` is a rational prime define the `-adic Tate module of E

T`(E) = lim←−
n

E[`n],

inverse limit with respect to the maps ` : E[`n+1] → E[`n]. If ` 6= char(F )
then Example 1.4 shows that

T`(E) ∼= Z2
` .

The Galois group GF acts Z`-linearly on T`(E), giving a representation

ρ` : GF → Aut(T`(E)) ∼= GL2(Z`)

when ` 6= char(F ).

Theorem 1.11. If E is an elliptic curve then EndF (E) is one of the follow-
ing types of rings.

(i) Z,
(ii) an order in an imaginary quadratic field,
(iii) an order in a division quaternion algebra over Q.

Proof. See [Si] §III.9. ut
Example 1.12. Suppose char(F ) 6= 2 and E is the curve y2 = x3 − dx where
d ∈ F×. Let φ be defined by φ(x, y) = (−x, iy) where i =

√−1 ∈ F̄ . Then
φ ∈ EndF̄ (E), and ι(φ) = i so φ ∈ EndF (E) ⇔ i ∈ F . Also, φ has order 4 in
EndF̄ (E)× so we see that Z[φ] ∼= Z[i] ⊂ EndF̄ (E). (In fact, Z[φ] = EndF̄ (E)
if char(F ) = 0 or if char(F ) ≡ 1 (mod 4), and EndF̄ (E) is an order in a
quaternion algebra if char(F ) ≡ 3 (mod 4).) The next lemma gives a converse
to this example.

Lemma 1.13. Suppose E is given by a Weierstrass equation y2 = x3+ax+b.
If Aut(E) contains an element of order 4 (resp. 3) then b = 0 (resp. a = 0).

Proof. The only automorphisms of such a Weierstrass elliptic curve are of
the form (x, y) 7→ (u2x, u3y) (see [Si] Remark III.1.3). The order of such an
automorphism is the order of u in F×, and when u has order 3 or 4 this
change of variables preserves the equation if and only if a = 0 (resp. b = 0).

ut

2 Elliptic Curves over C

Remark 2.1. Note that an elliptic curve defined over a field of characteristic
zero can be defined over Q[a1, a2, a3, a4, a6], and this field can be embedded
in C. In this way many of the results of this section apply to all elliptic curves
in characteristic zero.
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2.1 Lattices

Definition 2.2. Suppose L is a lattice in C. Define the Weierstrass ℘-
function, the Weierstrass σ-function, and the Eisenstein series attached to
L

℘(z;L) =
1
z2

+
∑

0 6=ω∈L

1
(z + ω)2

− 1
ω2

σ(z;L) = z
∏

0 6=ω∈L

(
1− z

ω

)
e(z/ω)+(z/ω)2/2

Gk(L) =
∑

0 6=ω∈L

1
ωk

for k even, k ≥ 4.

We will suppress the L from the notation in these functions when there is no
danger of confusion. See [Si] Theorem VI.3.1, Lemma VI.3.3, and Theorem
VI.3.5 for the convergence and periodicity properties of these functions.

Theorem 2.3. (i) If L is a lattice in C then the map

z 7→ (℘(z;L), ℘′(z;L)/2)

is an analytic isomorphism (and a group homomorphism) from C/L to
E(C) where E is the elliptic curve y2 = x3 − 15G4(L)x− 35G6(L).

(ii) Conversely, if E is an elliptic curve defined over C given by an equation
y2 = x3+ax+b then there is a unique lattice L ⊂ C such that 15G4(L) =
−a and 35G6(L) = −b, so (i) gives an isomorphism from C/L to E(C).

(iii) The correspondence above identifies the holomorphic differential ωE with
dz.

Proof. The first statement is Proposition VI.3.6 of [Si] and the second is
proved in [Sh] §4.2. For (iii), we have that

dx/2y = d(℘(z))/℘′(z) = dz.

ut
Remark 2.4. If E is the elliptic curve defined over C with a Weierstrass model
y2 = x3 +ax+ b and ωE is the differential dx/2y of Proposition 1.2, then the
lattice L associated to E by Theorem 2.3(ii) is

{∫

γ

ωE : γ ∈ H1(E,Z)
}

and the map

P 7→
∫ P

O

ωE

is the isomorphism from E(C) to C/L which is the inverse of the map of
Theorem 2.3(i).
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Definition 2.5. If L ⊂ C is a lattice define

∆(L) = (60G4(L))3 − 27(140G6(L))2

j(L) = −1728(60G4(L))3/∆(L).

Then ∆(L) is the discriminant and j(L) the j-invariant of the elliptic curve
corresponding to L by Theorem 2.3.

Proposition 2.6. Suppose E is an elliptic curve defined over C, correspond-
ing to a lattice L under the bijection of Theorem 2.3. Then the map ι of
Definition 1.7 is an isomorphism

EndC(E) ∼−→ {α ∈ C : αL ⊂ L}.
Proof. See [Si] Theorem VI.4.1. ut
Corollary 2.7. If E is an elliptic curve defined over a field F of character-
istic zero, then EndF (E) is either Z or an order in an imaginary quadratic
field.

Proof. If E is defined over a subfield of C then Proposition 2.6 identifies
EndC(E) with {α ∈ C : αL ⊂ L}. The latter object is a discrete subring of
C, and hence is either Z or an order in an imaginary quadratic field.

Using the principle of Remark 2.1 at the beginning of this section, the
same holds for all fields F of characteristic zero. ut

The following table gives a dictionary between elliptic curves over an
arbitrary field and elliptic curves over C.

over abitrary field over C

(E, ωE) (C/L, dz)

x, y ℘(z; L), ℘′(z; L)/2

isomorphism class of E {αL : α ∈ C×}
EndC(E) {α ∈ C : αL ⊂ L}
AutC(E) {α ∈ C× : αL = L}

E[m] m−1L/L

3 Elliptic Curves over Local Fields

For this section suppose
– p is a rational prime,
– F is a finite extension of Qp,
– O is the ring of integers of F ,
– p is the maximal ideal of F ,
– π is a generator of p
– k = O/p is the residue field of O
– v : F → Z ∪ {∞} is the valuation on F , v(π) = 1.

We fix an elliptic curve E defined over F .
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3.1 Reduction

Definition 3.1. A Weierstrass equation (1) for E is minimal if

– a1, a2, a3, a4, a6 ∈ O,
– the valuation of the discriminant of this equation is minimal in the set of

valuations of all Weierstrass equations for E with coefficients in O.

Every elliptic curve E has a minimal Weierstrass equation, or minimal model,
and the minimal discriminant of E is the ideal of O generated by the dis-
criminant of a minimal Weierstrass model of E.

The reduction Ẽ of E is the curve defined over the residue field k by the
Weierstrass equation

y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x + ã6 (2)

where the ai are the coefficients of a minimal Weierstrass equation for E
and ãi denotes the image of ai in k. The reduction Ẽ is independent (up
to isomorphism) of the particular minimal equation chosen for E (see [Si]
Proposition VII.1.3(b)).

The curve Ẽ may be singular, but it has at most one singular point ([Si]
Proposition III.1.4(a)). In that case the quasi-projective curve

Ẽns = Ẽ − {singular point on Ẽ}
has a geometrically-defined group law just as an elliptic curve does (see [Si]
Proposition III.2.5).

If ∆ is the minimal discriminant of E, then one of the following three
possibilities holds (see for example [Si] Proposition III.2.5):

(i) ∆ ∈ O× and Ẽ is nonsingular, i.e., Ẽ = Ẽns is an elliptic curve,
(ii) ∆ /∈ O×, Ẽ is singular, and Ẽns(k) ∼= k×, or
(iii) ∆ /∈ O×, Ẽ is singular, and Ẽns(k) ∼= k.

We say that E has good (resp. multiplicative, resp. additive) reduction if (i)
(resp. (ii), resp. (iii)) is satisfied.

We say that E has potentially good reduction if there is a finite extension
F ′ of F such that E has good reduction over F ′.

Lemma 3.2. (i) E has potentially good reduction if and only if j(E) ∈ O.
(ii) If E has potentially good reduction then E has either good or additive

reduction.

Proof. See [Si] Propositions VII.5.4 and IV.5.5. ut
Definition 3.3. There is a natural reduction map

P2(F ) → P2(k).

By restriction this defines a reduction map from E(F ) to Ẽ(k). We define
E0(F ) ⊂ E(F ) to be the inverse image of Ẽns(k) and E1(F ) ⊂ E(F ) to be
the inverse image of Õ ∈ Ẽns(k).
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Proposition 3.4. There is an exact sequence of abelian groups

0 → E1(F ) → E0(F ) → Ẽns(k) → 0

where the map on the right is the reduction map. If E has good reduction
then the reduction map induces an injective homomorphism

EndF (E) → Endk(Ẽ).

Proof. See [Si] Proposition VII.2.1. ut
If E has good reduction and φ ∈ EndF (E), we will write φ̃ for the endo-

morphism of Ẽ which is the reduction of φ.

Lemma 3.5. If E is defined by a minimal Weierstrass equation then

E1(F ) = {(x, y) ∈ E(F ) : v(x) < 0} = {(x, y) ∈ E(F ) : v(y) < 0}.
If (x, y) ∈ E1(F ) then 3v(x) = 2v(y) < 0.

Proof. It is clear from the definition of the reduction map that (x, y, 1) re-
duces to (0, 1, 0) if and only if v(y) < 0 and v(y) < v(x). If (x, y) ∈ E(F )
then, since x and y satisfy a Weierstrass equation with coefficients in O, it is
clear that

v(x) < 0 ⇔ v(y) < 0

and in that case v(y) = (3/2)v(x) < v(x). ut
Lemma 3.6. Suppose E has good reduction, φ ∈ EndF (E), and φ̃ is purely
inseparable. Then

(i) φ̃ is injective on Ẽ(k).
(ii) ker(φ) ⊂ E1(F )

Proof. Clear. ut

3.2 The Formal Group

Theorem 3.7. Fix a minimal Weierstrass model (1) of E. There is a formal
group Ê defined by a power series FE ∈ O[[Z,Z ′]], and a power series

w(Z) = Z3 + a1Z
4 + (a2

1 + a2)Z5 + · · · ∈ O[[Z]],

such that if we define

x(Z) = Z/w(Z) ∈ Z−2O[[Z]], y(Z) = −1/w(Z) ∈ Z−3O[[Z]]

then

(i) (x(Z), y(Z)) ∈ E(O((Z))),
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(ii) (x(Z), y(Z)) + (x(Z ′), y(Z ′)) = (x(FE(Z, Z ′)), y(FE(Z, Z ′)))

as points on E with coordinates in the fraction field of F ((Z, Z ′)),
(iii) there is a map EndF (E) → End(Ê) (which we will denote by φ 7→ φ(Z) ∈

O[[Z]]) such that for every φ ∈ EndF (E),

φ((x(Z), y(Z))) = (x(φ(Z)), y(φ(Z)))

in E(F ((Z))).

Proof. See [Ta] or [Si], §IV.1 for an explicit construction of the power series
w(Z) and FE(Z,Z). The idea is that Z = −x/y is a uniformizing parameter
at the origin of E, and everything (x, y, the group law, endomorphisms) can
be expanded as power series in Z. ut

For every n ≥ 1 write Ê(pn) for the commutative group whose underlying
set is pn, with the operation (z, z′) 7→ FE(z, z′).

Corollary 3.8. With notation as in Theorem 3.7,

Z 7→ (Z/w(Z),−1/w(Z))

is an isomorphism from Ê(p) to E1(F ) with inverse given by

(x, y) 7→ −x/y.

Proof. See [Si] Proposition VII.2.2. The first map is a map into E1(F ) by
Lemma 3.5 and Theorem 3.7(i), and is a homomorphism by Theorem 3.7(ii).
It is injective because the only zero of w(Z) in p is Z = 0. The second map is
clearly a left-inverse of the first, and it maps into p by Lemma 3.5. We only
need show that the second map is also one-to-one.

If we rewrite our Weierstrass equation for E with variables w = −1/y and
z = −x/y we get a new equation

a6w
3 + (a4z + a3)w2 + (a2z

2 + a1z − 1)w + z3 = 0.

Fix a value of z ∈ p and consider the set S of roots w of this equation. If
(z, w) corresponds to a point in E1(F ) then by Lemma 3.5, v(w) = v(z3) > 0.
It follows easily that S contains at most one root w corresponding to a point
of E1(F ), and hence the map (x, y) 7→ −x/y is one-to-one on E1(F ). ut

Corollary 3.9. Suppose #(k) = q, E has good reduction, and φ ∈ EndK(E)
reduces to the Frobenius endomorphism ϕq ∈ Endk(Ẽ). Then

φ(Z) ≡ Zq (mod pO[[Z]]).
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Proof. If the reduction of φ is ϕq then by Theorem 3.7(iii)

(x(φ(Z)), y(φ(Z))) = φ((x(Z), y(Z))) ≡ (x(Z)q, y(Z)q)
≡ (x(Zq), y(Zq)) (mod pO((Z))).

Since y(Z) is invertible in O((Z)), we conclude that

φ(Z) = −x(φ(Z))/y(φ(Z)) ≡ −x(Zq)/y(Zq) = Zq (mod pO((Z))).

ut

Definition 3.10. Recall that

ωE =
dx

2y + a1x + a3
=

dy

3x2 + 2a2x + a4 − a1y

is the holomorphic, translation-invariant differential on E from Proposition
1.2. Define

ω̂(Z) =
d

dZ
x(Z)

2y(Z) + a1x(Z) + a3
∈ 1 + ZO[[Z]].

Let λÊ(Z) be the unique element of Z+Z2F [[Z]] such that d
dZ

λÊ(Z) = ω̂(Z).

Lemma 3.11. (i) The power series λÊ is the logarithm map of Ê, the iso-
morphism from Ê to the additive formal group Ga such that λ′E(0) = 1.

(ii) The power series λÊ converges on p. If ordp(p) < p − 1 then λÊ is an
isomorphism from Ê(p) to the additive group p.

Proof. Let FE ∈ O[[Z,Z ′]] be the addition law for Ê. We need to show that

λE(FE(Z,Z ′)) = λE(Z) + λE(Z ′).

Since ωE is translation invariant (Proposition 1.2),

ω̂(FE(Z, Z ′))d(FE(Z, Z ′)) = ω̂(Z)dZ

and therefore
d

dZ
λE(FE(Z, Z ′)) = d

dZ
λE(Z).

Therefore λE(FE(Z, Z ′)) = λE(Z) + c(Z ′) with c(Z ′) ∈ F [[Z ′]]. Evaluating
at Z = 0 shows c(Z ′) = λE(Z ′) as desired.

The uniqueness of the logarithm map and (ii) are standard elementary
results in the theory of formal groups. ut

Definition 3.12. Define λE : E1(F ) → F to be the composition of the
inverse of the isomorphism of Corollary 3.8 with λÊ .

Corollary 3.13. If ordp(p) < p−1 then λE : E1(F ) → p is an isomorphism.
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Proof. This is immediate from Lemma 3.11. ut
Recall the map ι : EndF (E) → F of Definition 1.7 defined by the action

of an endomorphism on holomorphic differentials.

Proposition 3.14. For every φ ∈ EndF (E), φ(Z) = ι(φ)Z + O(Z2).

Proof. By definition of ι, ω̂(φ(Z)) = ι(φ)ω̂(Z), i.e.,

d(x(φ(Z)))
2y(φ(Z)) + a1x(φ(Z)) + a3

= ι(φ)
d(x(Z))

2y(Z) + a1x(Z) + a3
.

Using the definitions of x(Z) and y(Z), the right-hand side is (ι(φ)+O(Z))dZ,
and the left-hand side is (φ′(0) + O(Z))dZ. This completes the proof. ut

3.3 Applications to Torsion Subgroups

Theorem 3.15. Suppose φ ∈ EndF (E) and ι(φ) ∈ O×.

(i) φ is an automorphism of E1(F ).
(ii) If E has good reduction then the reduction map E[φ] ∩ E(F ) → Ẽ(k) is

injective.

Proof. By definition of a formal group, FE(X,Y ) = X +Y +O(X2, XY, Y 2).
Using Proposition 3.14, for every n ≥ 1 we have a commutative diagram

Ê(pn)/Ê(pn+1) ∼−−−−→ pn/pn+1 ∼−−−−→ k

φ

y ι(φ)

y ι(φ)

y
Ê(pn)/Ê(pn+1) ∼−−−−→ pn/pn+1 ∼−−−−→ k

Since ι(φ) ∈ O× we see that φ is an automorphism of Ê(pn)/Ê(pn+1) for ev-
ery n ≥ 1, and from this it is not difficult to show that φ is an automorphism
of Ê(p). Therefore by Corollary 3.8, φ is an automorphism of E1(F ). This
proves (i), and (ii) as well since E1(F ) is the kernel of the reduction map and
(i) shows that E1(F ) ∩ E[φ] = 0. ut
Remark 3.16. Theorem 3.15 shows in particular that if E has good reduction
and m is prime to p, then the reduction map E[m] → Ẽ[m] is injective.

Corollary 3.17. Suppose E has good reduction, φ ∈ EndF (E), and ι(φ) ∈
O×. If P ∈ E(F̄ ) and φ(P ) ∈ E(F ), then F (E[φ], P )/F is unramified.

Proof. Let F ′ = F (E[φ], P ) and let k′ be its residue field. Then F ′/F is
Galois and we let I ⊂ Gal(F ′/F ) denote the inertia group.

Suppose σ ∈ I. Then the reduction σ̃ of σ is the identity on k′, so if
R ∈ E(F̄ ) and φ(R) ∈ E(F ) then σR−R ∈ E[φ] and

˜σR−R = σ̃R̃− R̃ = 0.
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By Theorem 3.15(ii), since ι(φ) ∈ O× we conclude that σR = R. In other
words σ fixes E[φ] and P , so σ fixes F ′, i.e., σ = 1. Hence I is trivial and
F ′/F is unramified. ut

Corollary 3.18. Suppose ` 6= p, and let I denote the inertia subgroup of
GF .

(i) If E has good reduction then I acts trivially on T`(E).
(ii) If E has potentially good reduction then I acts on T`(E) through a finite

quotient.

Proof. This is clear by Corollary 3.17. ut

The converse of Corollary 3.18 is the following.

Theorem 3.19 (Criterion of Néron-Ogg-Shafarevich). Let I ⊂ GF

denote the inertia group.

(i) If ` 6= p and I acts trivially on T`(E), then E has good reduction.
(ii) If ` 6= p and T`(E)I 6= 0, then E has good or multiplicative reduction.

Proof. See [Si] Theorem VII.7.1 for (i).. The proof of (ii) is the same except
that we use the fact that if E has additive reduction, then over any unramified
extension F ′ of F with residue field k′, Ẽns(k′) is killed by p and hence has
no points of order `. ut

4 Elliptic Curves over Number Fields

For this section suppose F is a number field and E is an elliptic curve defined
over F . Our main interest is in studying the Mordell-Weil group E(F ).

If q is a prime of F we say that E has good (resp. potentially good, bad,
additive, multiplicative) reduction at q if E, viewed as an elliptic curve over
the local field Fq (F completed at q) does. We will write ∆(E) for the minimal
discriminant of E, the ideal of F which is the product over all primes q of
the minimal discriminant of E over Fq. This is well-defined because (every
Weierstrass model of) E has good reduction outside of a finite set of primes.

Since F has characteristic zero, the map ι : EndF (E) → F of Definition
1.7 (giving the action of EndF (E) on differentials) is injective, and from now
on we will identify EndF (E) with its image O ⊂ F . By Corollary 2.7, O is
either Z or an order in an imaginary quadratic field.

If α ∈ O we will also write α for the corresponding endomorphism of E, so
E[α] ⊂ E(F̄ ) is the kernel of α and F (E[α]) is the extension of F generated
by the coordinates of the points in E[α].
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Definition 4.1. Suppose α ∈ O, α 6= 0. Multiplication by α is surjective on
E(F̄ ), so there is an exact sequence

0 → E[α] → E(F̄ ) α−→ E(F̄ ) → 0.

Taking GF -cohomology yields a long exact sequence

E(F ) α−→ E(F ) → H1(F, E[α]) → H1(F,E) α−→ H1(F,E)

where H1(F, E) = H1(F,E(F̄ )). We can rewrite this as

0 → E(F )/αE(F ) → H1(F, E[α]) → H1(F, E)α → 0 (3)

where H1(F, E)α denotes the kernel of α on H1(F,E). Concretely, the con-
necting map E(F )/αE(F ) ↪→ H1(F, E[α]) is the “Kummer theory” map
defined by

P 7→ (σ 7→ σQ−Q) (4)

where Q ∈ E(F̄ ) satisfies αQ = P .
In exactly the same way, if q is a prime (finite or infinite) of F we can

replace F by the completion Fq in (3), and this leads to the diagram

0 → E(F )/αE(F ) −−−−→ H1(F, E[α]) −−−−→ H1(F, E)α → 0
y

yresq

yresq

0 →E(Fq)/αE(Fq) −−−−→ H1(Fq, E[α]) −−−−→ H1(Fq, E)α → 0.

(5)

We define the Selmer group (relative to α)

Sα(E) = Sα(E/F ) ⊂ H1(F,E[α])

by

Sα(E) = {c ∈ H1(F, E[α]) : resq(c) ∈ image(E(Fq)/αE(Fq)) for every q}
= {c ∈ H1(F, E[α]) : resq(c) = 0 in H1(Fq, E) for every q}.

Proposition 4.2. Suppose α ∈ O, α 6= 0. Under the Kummer map (3),
Sα(E) contains the image of E(F )/αE(F ).

Proof. Clear. ut

Remark 4.3. One should think of the Selmer group Sα(E) as the smallest
subgroup of H1(F, E[α]) defined by natural local conditions which contains
the image of E(F )/αE(F ).

Proposition 4.4. Suppose α ∈ O, α 6= 0. Then the Selmer group Sα(E) is
finite.
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Proof. Suppose first that E[α] ⊂ E(F ), so H1(F, E[α]) = Hom(GF , E[α]).
Let L be the maximal abelian extension of F of exponent deg(α) which is
unramified outside of the (finite) set of primes

ΣE,α = {p of F : p divides α∆(E) or p is infinite}.
If c ∈ Sα(E) ⊂ Hom(GF , E[α]) then c is trivial on

– commutators,
– deg(α)-th powers,
– inertia groups of primes outside of ΣE,α,

the first two because E[α] is abelian and annihilated by deg(α), and the last
because of (4) and Corollary 3.17. Therefore c factors through Gal(L/F ), so

Sα(E) ⊂ Hom(Gal(L/F ), E[α]).

Class field theory shows that L/F is finite, so this proves the proposition in
this case.

In general, the restriction map

0 → H1(F (E[α])/F,E[α]) → H1(F, E[α]) res−→ H1(F (E[α]), E[α])

sends Sα(E/F ) into Sα(E/F (E[α])). The case above shows that Sα(E/F (E[α]))
is finite, and H1(F (E[α])/F, E[α]) is finite, so Sα(E/F ) is finite. ut
Corollary 4.5 (Weak Mordell-Weil Theorem). For every nonzero α ∈
O, E(F )/αE(F ) is finite.

Proof. This is clear from Propositions 4.2 and 4.4. ut
Theorem 4.6 (Mordell-Weil). E(F ) is finitely generated.

Proof. See [Si] §VIII.6. ut
Definition 4.7. The Tate-Shafarevich group X(E) of E over F is the sub-
group of H1(F, E(F̄ )) defined by

X(E) = ker

(
H1(F, E(F̄ )) →

∏

v of F

H1(Fv, E)

)
.

Proposition 4.8. If α ∈ O, α 6= 0, then the exact sequence (3) restricts to
an exact sequence

0 → E(F )/αE(F ) → Sα(E) →X(E)α → 0

where X(E)α is the subgroup of elements of X(E) killed by α.

Proof. This is clear from the definitions and the diagram (5). ut
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5 Elliptic Curves with Complex Multiplication

Fix a subfield F of C and an elliptic curve E defined over F .

Definition 5.1. We say E has complex multiplication over F if EndF (E) is
an order in an imaginary quadratic field, i.e., if EndF (E) 6= Z.

Assume from now on that E has complex multiplication, and let

O = ι(EndF (E)) ⊂ F.

As in §4 we will use ι to identify EndF (E) with O. Let K = QO ⊂ F be the
imaginary quadratic field containing O, and denote the full ring of integers
of K by OK . If a is an ideal of O we will write E[a] = ∩α∈aE[α].

Fix an embedding of F into C. Viewing E as an elliptic curve over C and
using Proposition 2.6 we can write

E(C) ∼= C/L where L ⊂ K ⊂ C and OL = L. (6)

(A priori L is just a lattice in C, but replacing L by λL where λ−1 ∈ L we
may assume that L ⊂ K.) Thus if O = OK , then L is a fractional ideal of K.

5.1 Preliminaries

In this section we record the basic consequences of complex multiplication.
Put most simply, if E has complex multiplication over F then all torsion
points in E(F̄ ) are defined over abelian extensions of F .

Remark 5.2. It will simplify the exposition to assume that O = OK . The
following proposition shows that this restriction is not too severe. Two elliptic
curves are isogenous if there is an isogeny (a nonzero morphism sending one
origin to the other) from one to the other.

Proposition 5.3. There is an elliptic curve E′, defined over F and isoge-
nous over F to E, such that EndF (E) ∼= OK .

Proof. Suppose the conductor of O is c, i.e., O = Z+cOK , and let c = cOK ⊂
O. The subgroup E[c] is stable under GF , so by [Si] Proposition III.4.12 and
Exercise III.3.13 there is an elliptic curve E′ over F and an isogeny from E
to E′ with kernel E[c]. We only need to check that EndF (E′) = OK .

With the identification (6), E′(C) ∼= C/L′ where

L′ = {z ∈ C : zc ⊂ L}.
Suppose α ∈ OK . For every z ∈ L′,

(αz)c = z(αc) ∈ zc ⊂ L

so αz ∈ L′. Therefore by Proposition 2.6, α ∈ EndC(E′). By Lemma 1.8,
since α ∈ K ⊂ F we conclude that α ∈ EndF (E′). ut
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From now on we will assume that O is the maximal order OK .

Proposition 5.4. If a is a nonzero ideal of O then E[a] ∼= O/a as O-
modules.

Proof. Using the identification (6) we see that E[a] ∼= a−1L/L where L is a
fractional ideal of K, and then a−1L/L ∼= O/a. ut

Corollary 5.5. If a is a nonzero ideal of O then the action of GF on E[a]
induces an injection

Gal(F (E[a])/F ) ↪→ (O/a)×.

In particular F (E[a])/F is abelian.

Proof. If β ∈ O, σ ∈ GF , and P ∈ E(F̄ ) then, since the endomorphism β is
defined over F , σ(βP ) = β(σP ). Thus there is a map

Gal(F (E[a])/F ) ↪→ AutO(E[a]).

By Proposition 5.4,

AutO(E[a]) ∼= AutO(O/a) = (O/a)×.

ut

If a is a nonzero ideal of O let E[a∞] = ∪nE[an].

Corollary 5.6. The action of GF on E[a∞] induces an injection

Gal(F (E[a∞])/F ) ↪→ (lim←−
n

O/an)×.

In particular for every prime p,

Gal(F (E[p∞])/F ) ↪→ (O ⊗ Zp)×.

Proof. Immediate from Corollary 5.5 ut

Theorem 5.7. Suppose F is a finite extension of Q` for some `.

(i) E has potentially good reduction.
(ii) Suppose p is a prime of O and n ∈ Z+ is such that the multiplicative

group 1 + pnOp is torsion-free (where Op is the completion of O at p). If
p - ` then E has good reduction over F (E[pn]) at all primes not dividing
p.
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Proof. Suppose p is a rational prime. By Corollary 5.6, the Galois group
Gal(F (E[p∞])/F (E[p])) is isomorphic to a subgroup of the multiplicative
group 1 + pO ⊗ Zp. If p > 3 then the p-adic logarithm map shows that
1 + pO ⊗ Zp

∼= pOp
∼= Z2

p. Thus

Gal(F (E[p∞])/F (E[p])) ∼= Zd
p

with d ≤ 2. If p 6= `, class field theory shows that such an extension is un-
ramified. Thus by the criterion of Néron-Ogg-Shafarevich (Theorem 3.19(i))
E has good reduction over F (E[p]). This proves (i).

The proof of (ii) is similar. Write F∞ = F (E[p∞]) and Fn = F (E[pn]),
and suppose q is a prime of Fn not dividing p. By (i) and Corollary 3.17, the
inertia group Iq of q in Gal(F∞/Fn) is finite. But Corollary 5.6 shows that

Gal(F∞/Fn) ⊂ 1 + pnOp,

which has no finite subgroups, so Iq acts trivially on E[p∞]. Therefore by
Theorem 3.19(ii), E has good or multiplicative reduction at q. Since we al-
ready know that the reduction is potentially good, Lemma 3.2(ii) allows us
to conclude that E has good reduction at q. ut

Remark 5.8. The hypothesis of Theorem 5.7(ii) is satisfied with n = 1 if the
residue characteristic of p is greater than 3.

Proposition 5.9. Suppose q is a prime of F where E has good reduction
and q = NF/Qq. There is an endomorphism α ∈ O whose reduction modulo
q is the Frobenius endomorphism ϕq of Ẽ.

Proof. If ϕq = [m] for some m ∈ Z then the proposition is clear. So suppose
now that ϕq /∈ Z, and write k for the residue field of F at q. Since ϕq

commutes with every endomorphism of Ẽ, we see from Theorem 1.11 that
the only possibility is that Endk(Ẽ) is an order in an imaginary quadratic
field. But the reduction map EndF (E) → Endk(Ẽ) is injective (Proposition
3.4) so its image, the maximal order of K, must be all of Endk(Ẽ). This
proves the proposition. ut

5.2 The Main Theorem of Complex Multiplication

In this section we study further the action of GF on torsion points of E.
We will see that not only are torsion points abelian over F , in fact they are
“almost” abelian over K, so that (using class field theory) we can describe
the action of GF on torsion points in terms of an action of the ideles of K.

The reference for this section is [Sh] Chapter 5; see also [ST]. We continue
to suppose that E has complex multiplication by the maximal order of K.
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Definition 5.10. Let A×
K denote the group of ideles of K. There is a natural

map from A×
K to the group of fractional ideals of K, and if x ∈ A×

K and a is
a fractional ideal of K we will write xa for the product of a and the fractional
ideal corresponding to x.

If p is a prime of K let Op ⊂ Kp denote the completions of O and K at
p. If a is a fractional ideal of K, write ap = aOp and then

K/a = a⊗ (K/O) = a⊗ (⊕p(Kp/Op)) = ⊕pKp/ap (7)

If x = (xp) ∈ A×
K then multiplication by xp gives an isomorphism from

Kp/ap to Kp/xpap = Kp/(xa)p, so putting these maps together in (7) we get
an isomorphism

x : K/a
∼−→ K/xa.

The following theorem is Theorem 5.4 in Shimura’s book [Sh]. Let Kab

denote the maximal abelian extension of K and [ · ,Kab/K] the Artin map
of global class field theory. If σ is an automorphism of C let Eσ denote the
elliptic curve obtained by applying σ to the coefficients of an equation for E.

Theorem 5.11 (Main theorem of complex multiplication). Fix a
fractional ideal a of K and an analytic isomorphism

ξ : C/a → E(C)

as in (6). Suppose σ ∈ Aut(C/K) and x ∈ A×
K satisfies [x,Kab/K] = σ |Kab .

Then there is a unique isomorphism ξ′ : C/x−1a → Eσ(C) such that the
following diagram commutes

K/a
ξ−−−−→ Etors

x−1

y
yσ

K/x−1a
ξ′−−−−→ Eσ

tors

where Etors denotes the torsion in E(C) and similarly for Eσ
tors.

Proof. See [Sh] Theorem 5.4. ut
Let H denote the Hilbert class field H of K.

Corollary 5.12. (i) K(j(E)) = H ⊂ F ,
(ii) j(E) is an integer of H.

Proof. Suppose σ ∈ Aut(C/K). With the notation of Theorem 5.11, as in
Proposition 2.6 we see that

j(E) = j(E)σ ⇔ E ∼= Eσ ⇔ C/a ∼= C/xa ⇔ xa = λa for some λ ∈ C

⇔ x ∈ K× ∏

p-∞
O×p

∏

p|∞
K×

p ⇔ [x,H/K] = 1 ⇔ σ is the identity on H.

This proves (i), and (ii) follows from Theorem 5.7(i) and Lemma 3.2(i). ut
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Corollary 5.13. There is an elliptic curve defined over H with endomor-
phism ring O = OK .

Proof. By Theorem 2.3(i) there is an elliptic curve E′ defined over C with
E′(C) ∼= C/O, and by Proposition 2.6, EndC(E′) ∼= O. Corollary 5.12 shows
that j(E′) ∈ H, so (see Proposition III.1.4 of [Si]) there is an elliptic curve
E defined over H with j(E) = j(E′). Hence E is isomorphic over C to E′,
so EndC(E) ∼= O.

The map ι : EndC(E) → C of Definition 1.7 is injective, so the image is
O ⊂ H. By Lemma 1.8 we conclude that EndC(E) = EndH(E). Thus E has
the desired properties. ut

Exercise 5.14. Let A be the ideal class group of K. If E ∼= C/a, b is an ideal
of K, σb is its image under the isomorphism AK

∼−→ Gal(H/K), and σ ∈ GK

restricts to σb on H, then

Eσ(C) ∼= C/b−1a.

For the rest of this section we suppose that F is a number field.

Theorem 5.15. There is a Hecke character

ψ = ψE : A×
F /F× → C×

with the following properties.

(i) If x ∈ A×
F and y = NF/Kx ∈ A×

K , then

ψ(x)O = y−1
∞ (yO) ⊂ C.

(ii) If x ∈ A×
F is a finite idele (i.e., the archimedean component is 1) and p

is a prime of K, then ψ(x)(NF/Kx)−1
p ∈ O×p and for every P ∈ E[p∞]

[x, F ab/F ]P = ψ(x)(NF/Kx)−1
p P.

(iii) If q is a prime of F and Uq denotes the local units in the completion of
F at q, then

ψ(Uq) = 1 ⇔ E has good reduction at q.

Proof. Suppose x ∈ A×
F , and let y = NF/Kx, σ = [x, F ab/F ]. Then σ re-

stricted to Kab is [y, Kab/K] so we can apply Theorem 5.11 with σ and y.
Since σ fixes F , Eσ = E so Theorem 5.11 gives a diagram with isomorphisms
ξ : C/a → E(C) and ξ′ : C/y−1a → E(C). Then ξ−1 ◦ ξ′ : C/y−1a

∼−→ C/a
is an isomorphism, so it must be multiplication by an element ψfin(x) ∈ K×

satisfying ψfin(x)O = yO. Define

ψ(x) = y−1
∞ ψfin(x).
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It is clear that ψ : A×
F /F× → C× is a homomorphism and that (i) is

satisfied. If p is a prime of K and k > 0 then Theorem 5.11 gives a diagram

p−kap/ap
∼−−−−→ p−ka/a

ξ−−−−→ E[pk]

y−1
p

y y−1

y
yσ

p−ky−1
p ap/y−1

p ap
∼−−−−→ p−ky−1a/y−1a

ψfin(x)ξ−−−−−→ E[pk]

(where the left-hand square comes from the definition of the action of y on
K/a) which proves (ii).

Suppose q is a prime of F and p is a rational prime not lying below q.
By (ii), if u ∈ Uq then [u, F ab/F ] acts on Tp(E) as multiplication by ψ(u).
Since [Uq, F

ab/F ] is the inertia group at q, (iii) follows from Theorem 3.19
and Corollary 3.18(i).

Thus for almost all q, ψ(Uq) = 1. Even for primes q of bad reduction, since
the reduction is potentially good (Theorem 5.7(i)) the action of [Uq, F

ab/F ]
on Tp(E) factors through a finite quotient (Corollary 3.18(ii)) so the argument
above shows that ψ vanishes on an open subgroup of Uq. Therefore ψ is
continuous, and the proof of the theorem is complete. ut

Let f = fE denote the conductor of the Hecke character ψ of Theorem
5.15. We can view ψ as a character of fractional ideals of F prime to f in the
usual way.

Corollary 5.16. As a character on ideals, ψ satisfies

(i) if b is an ideal of F prime to f then ψ(b)O = NF/Kb,
(ii) if q is a prime of F not dividing f and b is an ideal of O prime to q, then

[q, F (E[b])/F ] acts on E[b] by multiplication by ψ(q).
(iii) if q is a prime of F where E has good reduction and q = NF/Qq then

ψ(q) ∈ O reduces modulo q to the Frobenius endomorphism ϕq of Ẽ.

Proof. The first two assertions are just translations of Theorem 5.15(i) and
(ii). If P ∈ Etors has order prime to q, P̃ denotes its reduction modulo a
prime of F̄ above q, and σq = [q, F (E[b])/F ], then

ψ̃(q)P̃ = σ̃qP = ϕqP̃

where the first equality is from (ii) and the second is the definition of the
Artin symbol [q, F (E[b])/F ]. Since the reduction map is injective on prime-
to-q torsion (Theorem 3.15) this proves (iii). ut

Remark 5.17. Note that Corollary 5.16(iii) gives an explicit version of Propo-
sition 5.9. Proposition 5.9 is one of the key points in the proof of the Main
Theorem of Complex Multiplication, of which Corollary 5.16 is a direct con-
sequence.
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Corollary 5.18. Suppose F = K and p is a prime of K such that the map
O× → (O/p)× is not surjective. Then E[p] 6⊂E(K).

Proof. By Theorem 5.15(ii), [O×p ,Kab/K] acts on E[p] via the character
ψ(x)x−1 of O×p , and by Theorem 5.15(i), ψ(O×p ) ⊂ O×. The corollary fol-
lows. ut

Corollary 5.19. Suppose F = K. Then the map O× → (O/f)× is injective.
In particular E cannot have good reduction at all primes of K.

Proof. Let u ∈ O×, u 6= 1 and let x be the idele defined by x∞ = 1 and
xp = u for all finite p. Then ψ(x) = ψ(u−1x) = u 6= 1, so by definition of f,
u 6≡ 1 (mod f). The second assertion now follows from Theorem 5.15(iii). ut

If a is an ideal of K let K(a) denote the ray class field of K modulo a.

Corollary 5.20. Suppose E is defined over K, a is an ideal of K prime to
6f, and p is a prime of K not dividing 6f.

(i) E[af] ⊂ E(K(af)).
(ii) The map Gal(K(E[a])/K) → (O/a)× of Corollary 5.5 is an isomorphism.
(iii) If b | a then the natural map Gal(K(af)/K(bf)) → Gal(K(E[a])/K(E[b]))

is an isomorphism.
(iv) K(E[apn])/K(E[a]) is totally ramified above p.
(v) If the map O× → (O/a)× is injective then K(E[apn])/K(E[a]) is unram-

ified outside of p.

Proof. Suppose x ∈ A×
K , xp ∈ O×p for all finite p and x∞ = 1. If x ≡

1(mod×f) then Theorem 5.15(ii) shows that [x,Kab/K] acts on Etors as mul-
tiplication by x−1. If x ≡ 1(mod×a) Theorem 5.15 shows that [x, Kab/K]
acts on E[a] as multiplication by ψ(x). Thus

– if p | f then the kernel of O×p → [O×p ,K(E[a])/K] is the kernel of the

composition O×p ψ−→ O× → (O/a)×;
– if pn | a and pn+1 - a then O×p /(1 + pnOp) ↪→ [O×p ,K(E[a])/K] ↪→

(O/pn)× is an isomorphism.

All assertions of the corollary follow without difficulty from this. ut

Remark 5.21. In fact, without much more difficulty one can strengthen Corol-
lary 5.20(i) (see [CW1] Lemma 4) to show that E[af] = E(K(af)), but we
will not need this.

Corollary 5.22. Suppose q is a prime of F . There is an elliptic curve E′

defined over F , such that

– E′ is isomorphic to E over F̄ ,
– E′ has good reduction at q.
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Proof. Let ψE be the Hecke character attached to E and Uq the group of local
units at q, viewed as a subgroup of A×

F . By Theorem 5.15(i), ψE(Uq) ⊂ O×.
Therefore we can find a continuous map

χ : A×
F /F× → O×

such that χ = ψE on Uq. We will take E′ to be the twist of E by χ−1 (see
[Si] §X.5).

Explicitly, suppose E is given by a Weierstrass equation

y2 = x3 + ax + b.

and let w = #(O×). By class field theory we can view χ as an element of

Hom(GF ,O×) = H1(F, µw) ∼= F×/(F×)w.

In other words, there is a d ∈ F× such that

(d1/w)σ = χ(σ)d1/w for every σ ∈ GF .

Define

E′ =





y2 = x3 + d2ax + d3b if w = 2
y2 = x3 + dax if w = 4
y2 = x3 + db if w = 6

(see Example 1.1). The map

(x, y) 7→





(dx, d3/2y) if w = 2
(d1/2x, d3/4y) if w = 4
(d1/3x, d1/2y) if w = 6

defines an isomorphism φ : E
∼−→ E′ over F (d1/w) (where we are using

Lemma 1.13). If P ∈ E(F̄ ) and σ ∈ GF , then

σ(φ(P )) = φσ(σP ) = χ(σ)−1φ(σP ).

From the definition of the Hecke character ψE′ of E′ we see that ψE′ =
χ−1ψE . By construction this is trivial on Uq, so by Theorem 5.15(iii) E′ has
good reduction at q. ut

6 Descent

In this section we use the results of §5 to compute the Selmer group of an
elliptic curve with complex multiplication. After some cohomological lemmas
in §6.1, we define an enlarged Selmer group S ′(E) in §6.2 which is easier to
compute (Lemma 6.4 and Theorem 6.5) than the true Selmer group S(E).
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The main result describing the Selmer group S(E) is Theorem 6.9. The meth-
ods of this section closely follow the original work of Coates and Wiles [CW1]
(see for example [Co]).

We continue to assume that E is an elliptic curve defined over a field F
of characteristic 0, with complex multiplication by the maximal order O of
an imaginary quadratic field K.

6.1 Preliminaries

Lemma 6.1. Suppose p is a prime of K lying above a rational prime p > 3,
and n ≥ 0. Let C be a subgroup of (O/pn)×, acting on O/pn via multiplica-
tion. If either C is not a p-group or C is cyclic, then for every i > 0

Hi(C,O/pn) = 0.

Proof. If C is cyclic this is a simple exercise. If C ′, the prime-to-p-part of C,
is nontrivial, then (O/pn)C′ = 0 and Hi(C ′,O/pn) = 0 for every i, so the
inflation-restriction exact sequence

0 → Hi(C/C ′, (O/pn)C′) → Hi(C,O/pn) → Hi(C ′,O/pn)

shows that Hi(C,O/pn) = 0. ut
Lemma 6.2. Suppose p is a prime of K lying above a rational prime p > 3,
and n ≥ 0.

(i) If Op = Zp or if E[p] 6⊂ E(F ) then the restriction map gives an isomor-
phism

H1(F, E[pn]) ∼= H1(F (E[pn]), E[pn])Gal(F (E[pn])/F ).

(ii) Suppose F is a finite extension of Q` for some ` 6= p. Then the restriction
map gives an injection

H1(F, E)pn ↪→ H1(F (E[pn]), E)pn .

Proof. Use Proposition 5.4 and Corollary 5.5 to identify E[pn] with O/pn and
Gal(F (E[pn])/F ) with a subgroup C of (O/pn)×. Then C is cyclic ifOp = Zp,
and C is a p-group if and only if E[p] ⊂ E(F ) (since Gal(F (E[p])/F ) ⊂
(O/p)× has order prime to p). Thus (i) follows from Lemma 6.1 and the
inflation-restriction exact sequence.

The kernel of the restriction map in (ii) is H1(Fn/F, E(Fn))pn , where
Fn = F (E[pn]). We may as well assume that n ≥ 1, or there is nothing to
prove. By Theorem 5.7(ii), E has good reduction over Fn, so by Proposition
3.4 there is a reduction exact sequence

0 → E1(Fn) → E(Fn) → Ẽ(kn) → 0

where kn is the residue field of Fn. Thus E1(Fn) is a profinite O-module,
of finite index in E(Fn), on which (by Theorem 3.15(i)) every α prime to `
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acts invertibly. It follows that the pro-p part of E(Fn) is finite, say E[pm] for
some m ≥ n, and hence

H1(Fn/F,E(Fn))pn ⊂ H1(Fn/F,E[pm]) = H1(F (E[pm])/F, E[pm]).

If E[p] ⊂ E(F ) then E has good reduction by Theorem 5.7(ii) (and Remark
5.8) so Fn/F is unramified and hence cyclic. Hence exactly as in (i), Lemma
6.1 shows that H1(F (E[pm])/F,E[pm]) = 0, and (ii) follows. ut

6.2 The Enlarged Selmer Group

Suppose for the rest of this section that F is a number field.

Definition 6.3. If α ∈ O define S ′α(E) = S ′α(E/F ) ⊂ H1(F, E[α]) by

S ′α(E) = {c ∈ H1(F, E[α]) : resq(c) ∈ image(E(Fq)/αE(Fq)) for every q - α}
= {c ∈ H1(F, E[α]) : resq(c) = 0 in H1(Fq, E(F̄q)) for every q - α}

in the diagram (5). Clearly Sα(E) ⊂ S ′α(E).

Lemma 6.4. Suppose p is a prime of K not dividing 6, n ≥ 1, E[pn] ⊂ E(F )
and pn = αO. Then

S ′α(E/F ) = Hom(Gal(M/F ), E[pn])

where M is the maximal abelian p-extension of F unramified outside of primes
above p.

Proof. Since E[pn] ⊂ E(F ),

H1(F, E[pn]) = Hom(GF , E[pn]), H1(Fq, E[pn]) = Hom(GFq , E[pn]).

Suppose q is a prime of F not dividing p. By Theorem 5.7(ii), E has good
reduction at p so by (4) and Corollary 3.17, the image of E(Fq)/αE(Fq)
under (5) is contained in Hom(GFq/Iq, E[pn]), where Iq is the inertia group
in GFq , and we have O-module isomorphisms

Hom(GFq/Iq, E[pn]) ∼= E[pn] ∼= O/pnO.

On the other hand, using Theorem 3.15 and writing k for the residue field of
Fq,

E(Fq)/αE(Fq) ∼= Ẽ(k)/αẼ(k) ∼= O/pnO.

Thus the image of E(Fq)/αE(Fq) ↪→ H1(Fq, E[pn]) under (5) must be equal
to Hom(GFq/Iq, E[pn]), and the lemma follows from the definition of S ′α. ut
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Theorem 6.5. Suppose E is defined over K, p is a prime of K not dividing
6, n ≥ 1, and pn = αO. Let Kn = K(E[pn]). Then

S ′α(E/K) = Hom(Gal(Mn/Kn), E[pn])Gal(Kn/K)

where Mn is the maximal abelian p-extension of Kn unramified outside of
primes above p.

Proof. Let G = Gal(Kn/K). By Lemma 6.2(ii) and Corollary 5.18, the re-
striction map gives an isomorphism

H1(K,E[pn]) ∼= H1(Kn, E[pn])G.

Clearly the image of S ′α(E/K) under this restriction isomorphism is contained
in S ′α(E/Kn

). Conversely, every class in H1(K,E[pn]) whose restriction lies in
S ′α(E/Kn

) already lies in S ′α(E/K), because by Lemma 6.2(iii) the restriction
map

H1(Kq, E(K̄q)) → H1(Kq(E[pn]), E(K̄q))

is injective for every prime q not dividing p. This proves that

S ′α(E/K) = S ′α(E/Kn
)G,

and so the theorem follows from Lemma 6.4. ut

6.3 The True Selmer Group

For the rest of this section we will suppose that E is defined over K, i.e.,
F = K. Recall that by Corollary 5.12 this implies that K has class number
one. Fix a prime p of K not dividing 6f and a generator π of p. Let λE :
E1(Kp) → pOp be the logarithm map of Definition 3.12.

Lemma 6.6. The map λE extends uniquely to a surjective map E(Kp)³pOp

whose kernel is finite and has no p-torsion.

Proof. By Corollary 3.13, λE : E1(Kp) → pOp is an isomorphism, and by
Lemma 3.6(i) and Corollary 5.16(iii), E(Kp)/E1(Kp) is finite and has no p-
torsion. ut

Definition 6.7. For every n ≥ 1 let Kn,p = Kp(E[pn]) and define a Kummer
pairing

〈 · , · 〉πn : E(Kp) × K×
n,p → E[pn]

P , x 7→ [x,Kab
n,p/Kn,p]Q−Q

where [ · , Kab
n,p/Kn,p] is the local Artin map and Q ∈ E(K̄p) satisfies πnQ =

P .
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Lemma 6.8. For every n there is a unique Galois-equivariant homomor-
phism δn : K×

n,p → E[pn] such that if P ∈ E(Kp) and x ∈ K×
n,p,

〈P, x〉πn = (π−1λE(P ))δn(x).

Further, if On,p denotes the ring of integers of Kn,p then δn(O×n,p) = E[pn].

Proof. Define δn(x) = 〈R, x〉πn where λE(R) = π, and then everything except
the surjectivity assertion is clear.

First note that by Theorem 5.15(ii), if x ∈ O×p then [x,Kn,p/Kp] acts on
E[pn] as multiplication by x−1. Therefore E(Kp) has no p-torsion and E[p]
has no proper GKp -stable subgroups.

By Lemma 6.6, E(Kp)/pnE(Kp)
∼−→ O/pn. Since

E(Kp)/pnE(Kp) ↪→ H1(Kp, E[pn]) ↪→ Hom(K×
n,p, E[pn])

is injective (the first map by (5) and the second by Lemmas 6.2(ii) and 6.6),
the image of δn is not contained in E[pn−1]. Since the image of δn is stable
under GKp , it must be all of E[pn]. But δn(K×

n,p)/δn(O×p,n) is a quotient of
E[pn] on which GKp acts trivially, and (as above) such a quotient must be
trivial, so δn(O×p,n) = E[pn] as well. ut
Theorem 6.9. With notation as above, let Kn = K(E[pn]) and On its ring
of integers, and define

Wn = K×
n

∏

v|∞
K×

n,v

∏

v-p∞
O×n,v · ker(δn) ⊂ A×

Kn
.

Then
Sπn(E/K) = Hom(A×

Kn
/Wn, E[pn])Gal(Kn/K).

Proof. By definition we have an injective map

E(Kp)/πnE(Kp) ↪→ Hom(K×
n,p/ker(δn), E[pn])Gal(Kn,p/Kp).

By Lemma 6.6, E(Kp)/πnE(Kp) ∼= O/pn. By Lemma 6.8 K×
n,p/ker(δn) ∼=

E[pn], and by Theorem 5.15(ii),

Hom(E[pn], E[pn])Gal(Kn,p/Kp) = HomO(E[pn], E[pn]) ∼= O/pn.

Therefore the injection above is an isomorphism, and the theorem follows
from Proposition 6.5 and class field theory. ut

Let A denote the ideal class group of K(E[p]), and E the group of global
units of K(E[p]).

Corollary 6.10. With notation as above,

Sπ(E) = 0 ⇔
(
Hom(A,E[p])Gal(K(E[p])/K) = 0 and δ1(E) 6= 0

)
.
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Proof. By Corollary 5.20, K(E[p])/K is totally ramified at p, of degree Np−1.
We identify K1,p with the completion of K(E[p]) at the unique prime above
p, and let O1,p denote its ring of integers and Ē the closure of E in O1,p. Let
V = ker(δ1) ∩ O×1,p and ∆ = Gal(K(E[p])/K). We have an exact sequence

0 → O×1,p/ĒV → A×
K1

/W1 → A′ → 0

where W1 is as in Theorem 6.9 and A′ is a quotient of A by some power of the
class of the prime P above p. Since PNp−1 = p is principal, Hom(A′, E[p]) =
Hom(A,E[p]). Using Theorem 6.9 we conclude that

Sπ(E) = 0 ⇔ (
Hom(A,E[p])∆ = 0 and Hom(O×1,p/ĒV, E[p])∆ = 0

)
.

By Lemma 6.8, δ1 : O×1,p/V → E[p] is an isomorphism. Since E[p] has no
proper Galois-stable submodules, it follows that

Hom(O×1,p/ĒV, E[p])∆ = 0 ⇔ Ē 6⊂ V ⇔ δ1(E) 6= 0.

This completes the proof of the corollary. ut

7 Elliptic Units

In this section we define elliptic units and relate them to special values of
L-functions. Elliptic units will be defined as certain rational functions of x-
coordinates of torsion points on a CM elliptic curve. The results of §5 will
allow us determine the action of the Galois group on these numbers, and hence
their fields of definition. We follow closely [CW1] §5; see also [dS] Chapter II
and Robert’s original memoir [Ro].

Throughout this section we fix an imaginary quadratic field K with ring
of integers O, an elliptic curve E over C with complex multiplication by O,
and a nontrivial ideal a of O prime to 6. For simplicity we will assume that
the class number of K is one; see [dS] for the general case.

7.1 Definition and Basic Properties

Definition 7.1. Choose a Weierstrass equation (1) for E with coordinate
functions x, y on E. Define a rational function on E

ΘE,a = α−12∆(E)Na−1
∏

P∈E[a]−O

(x− x(P ))−6

where α is a generator of a and ∆(E) is the discriminant of the chosen model
of E. Clearly this is independent of the choice of α.

Lemma 7.2. (i) ΘE,a is independent of the choice of Weierstrass model.
(ii) If φ : E′ ∼−→ E is an isomorphism of elliptic curves then ΘE′,a = ΘE,a◦φ.
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(iii) If E is defined over F then the rational function ΘE,a is defined over F .

Proof. Any other Weierstrass model has coordinate functions x′, y′ given by

x′ = u2x + r, y′ = u3y + sx + t

where u ∈ C× ([Si] Remark III.1.3), and then a′i = uiai and

∆(E′) = u12∆(E).

Since #(E[a]) = Na, this proves (i), and (ii) is just a different formulation of
(i). For (iii) we need only observe that α ∈ F , ∆(E) ∈ F , and GF permutes
the set {x(P ) : P ∈ E[a]−O}, so GF fixes ΘE,a. ut

Lemma 7.3. Suppose E is defined over K and p is a prime of K where E
has good reduction. Fix a Weierstrass model for E which is minimal at p.
Let b and c be nontrivial relatively prime ideals of O and P ∈ E[b], Q ∈ E[c]
points in E(K̄) of exact orders b and c, respectively. Fix an extension of the
p-adic order ordp to K̄, normalized so ordp(p) = 1.

(i) If n > 0 and b = pn then ordp(x(P )) = −2/(Npn−1(Np− 1)).
(ii) If b is not a power of p then ordp(x(P )) ≥ 0.
(iii) If p - bc then ordp(x(P )− x(Q)) = 0.

Proof. Suppose that b = pn with n ≥ 1. Let Ê be the formal group over Op

associated to E in Theorem 3.7. Let π = ψE(p), let [πm](X) ∈ O[[X]] be the
endomorphism of Ê corresponding to πm for every m, and define

f(X) = [πn](X)/[πn−1](X) ∈ O[[X]].

Since π reduces to the Frobenius endomorphism of the reduction Ẽ of E
modulo p (Corollary 5.16(iii)), it follows from Corollary 3.9 and Proposition
3.14 that

– f(X) ≡ XNpn−Npn−1
(mod p)

– f(X) ≡ π (mod X).

Thus by the Weierstrass preparation theorem,

f(X) = e(X)u(X)

where e(X) is an Eisenstein polynomial of degree Npn−1(Np−1) and u(X) ∈
O[[X]]×.

Since the reduction of π is a purely inseparable endomorphism of Ê,
Lemma 3.6 shows that E[pn] ⊂ E1(K̄p). Thus z = −x(P )/y(P ) is a root of
f(X), and hence of e(X), so ordp(x(P )/y(P )) = 1/(Npn−1(Np − 1)). Now
(i) follows from Lemma 3.5.
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If b is not a power of p then by Theorem 3.15(i), P /∈ E1(K̄p). Hence by
Lemma 3.5, ordp(x(P )) ≥ 0, which is (ii). Further, writing P̃ and Q̃ for the
reductions of P and Q, we have

ordp(x(P )− x(Q)) > 0 ⇔ x(P̃ ) = x(Q̃) ⇔ P̃ = ±Q̃ ⇔
⇔ P̃ ∓Q = Õ ⇔ P ∓Q ∈ E1(K̄p).

Since b and c are relatively prime, the order of P ±Q is not a power of p. So
again by Theorem 3.15(i), P ±Q /∈ E1(K̄p), and (iii) follows. ut

For every ideal b of O write K(b) for the ray class field of K modulo b.

Theorem 7.4. Suppose b is a nontrivial ideal of O relatively prime to a,
and Q ∈ E[b] is an O-generator of E[b].

(i) ΘE,a(Q) ∈ K(b).
(ii) If c is an ideal of O prime to b, c is a generator of c, and σc = [c,K(b)/K],

then
ΘE,a(Q)σc = ΘE,a(cQ).

(iii) If b is not a prime power then ΘE,a(Q) is a global unit. If b is a power
of a prime p then ΘE,a(Q) is a unit at primes not dividing p.

Proof. Since we assumed that K has class number one, by Corollary 5.13
and Lemma 7.2(i) we may assume that E is defined over K by a Weierstrass
model (1). Then by Lemma 7.2(iii) ΘE,a belongs to the function field K(E).

Let ψ be the Hecke character associated to E by Theorem 5.15. Suppose
x ∈ ∏

pO×p ⊂ A×
K and x ≡ 1 mod×b, and let σx = [x,Kab/K]. By Theorem

5.15, ψ(x) ∈ O× = Aut(E) and σxQ = ψ(x)Q. Therefore

ΘE,a(Q)σx = ΘE,a(Qσx) = ΘE,a(ψ(x)Q) = ΘE,a(Q),

the last equality by Lemma 7.2(ii). Since these σx generate Gal(K̄/K(b)),
this proves (i).

For (ii), let x ∈ A×
K be an idele with xO = c and xp = 1 for p dividing

b. Then Theorem 5.15 shows that ψ(x) ∈ cO× and σcQ = ψ(x)Q. So again
using Lemma 7.2(ii),

ΘE,a(Q)σc = ΘE,a(ψ(x)Q) = ΘE,a(cQ).

This is (ii).
For (iii), let p be a prime of K such that b is not a power of p. By Corollary

5.22 and Lemma 7.2, we may assume that our Weierstrass equation for E has
good reduction at p, so that ∆(E) is prime to p. Let n = ordp(a). Then

ordp(ΘE,a(Q))/6 = −2n−
∑

P∈E[pn]−O

ordp(x(Q)− x(P ))

−
∑

P∈E[a]−E[pn]

ordp(x(Q)− x(P )).
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By Lemma 7.3, since b is not a power of p,

ordp(x(Q)− x(P ))

=

{
−2/(Npm −Npm−1) if P has order exactly pm, m > 0
0 if the order of P is not a power of p.

From this one verifies easily that ordp(ΘE,a(Q)) = 0. ut

7.2 The Distribution Relation

Lemma 7.5. ΘE,a is a rational function on E with divisor

12Na[O]− 12
∑

P∈E[a]

[P ].

Proof. The coordinate function x is an even rational function with a double
pole at O and no other poles. Thus for every point P , the divisor of x−x(P )
is [P ] + [−P ]− 2[O] and the lemma follows easily. ut
Theorem 7.6. Suppose b is and ideal of O relatively prime to a, and β is a
generator of b. Then for every P ∈ E(K̄),

∏

R∈E[b]

ΘE,a(P + R) = ΘE,a(βP ).

Proof. Lemmas 7.2(iii) and 7.5 show that both sides of the equation in the
theorem are rational functions on E, defined over K, with divisor

12
∑

Q∈E[ab]

[Q]− 12Na
∑

R∈E[b]

[R].

Thus their ratio is a constant λ ∈ K×, and we need to show that λ = 1.
Let wK = #(O×) and fix a generator α of a. Evaluating this ratio at

P = O one sees that

λ =
∆(E)(Na−1)(Nb−1)

α12(Nb−1)β12(Na−1)

∏
R∈E[b]

R 6=0

∏
P∈E[a]

P 6=0

(x(R)− x(P ))−6 = µwK

with

µ =
∆(E)(Na−1)(Nb−1)/wK

α12(Nb−1)/wK β12(Na−1)/wK

∏
(x(R)− x(P ))−12/wK ,

where the final product is over R ∈ E[b]−O and P ∈ (E[a]−O)/± 1 (recall
a is prime to 6). Since wK divides 12, all of the exponents in the definition
of µ are integers.

Exactly as in the proof of Theorem 7.4(iii), one can show that µ ∈ O×,
and therefore λ = 1. ut
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Corollary 7.7. Suppose b is an ideal of O prime to a, Q ∈ E[b] has order
exactly b, p is a prime dividing b, π is a generator of p, and b′ = b/p. If the
reduction map O× → (O/b′)× is injective then

NK(b)/K(b′)ΘE,a(Q) =

{
ΘE,a(πQ) if p | b′
ΘE,a(πQ)1−Frob−1

p if p - b′

where in the latter case Frobp is the Frobenius of p in Gal(K(b′)/K).

Proof. Let C denote the multiplicative group 1 + b′(O/b). Because of our
hypotheses that O× injects into (O/b′)×, C is isomorphic to the kernel of
the map

(O/b)×/O× → (O/b′)×/O×.

Thus class field theory gives an isomorphism

C
∼−→ Gal(K(b)/K(b′))

which we will denote by c 7→ σc. Therefore

NK(b)/K(b′)ΘE,a(Q) =
∏

c∈C

ΘE,a(Q)σc =
∏

c∈C

ΘE,a(cQ)

by Theorem 7.4(ii).
One sees easily that

{cQ : c ∈ C} = {P ∈ E[b] : πP = πQ and P /∈ E[b′]}

=

{
{Q + R : R ∈ E[p]} if p | b′
{Q + R : R ∈ E[p], R 6≡ −Q (mod E[b′])} if p - b′

Thus if p | b′

NK(b)/K(b′)ΘE,a(Q) =
∏

R∈E[p]

ΘE,a(Q + R) = ΘE,a(πQ)

by Theorem 7.6. Similarly, if p - b′

ΘE,a(Q + R0)NK(b)/K(b′)ΘE,a(Q) = ΘE,a(πQ)

where R0 ∈ E[p] satisfies Q + R0 ∈ E[b′]. But then by Theorem 7.4(ii) (note
that our assumption on b′ implies that b′ 6= O)

ΘE,a(Q + R0)Frobp = ΘE,a(πQ + πR0) = ΘE,a(πQ)

so this completes the proof. ut
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7.3 Elliptic Curves over K

Since the function ΘE,a depends only on the isomorphism class of E over C,
we need to provide it with information that depends on E itself to make it
sensitive enough to “see” the value of the L-function of E at 1. Following
Coates and Wiles [CW1] we will write down a product of translates of ΘE,a

and then show that it has the connections we need with L-values.
From now on suppose that our elliptic curve E is defined over K, ψ is the

Hecke character attached to E by Theorem 5.15, f is the conductor of ψ, and
a is prime to f as well as to 6. For P ∈ E(K̄) let τP denote translation P , so
τP is a rational function defined over K(P ).

Fix an O-generator S of E[f]. By Corollary 5.20(i) S ∈ E(K(f)), and we
define

ΛE,a = ΛE,a,S =
∏

σ∈Gal(K(f)/K)

ΘE,a ◦ τSσ .

Proposition 7.8. (i) ΛE,a is a rational function defined over K.
(ii) If B is a set of ideals of O, prime to af, such that the Artin map b 7→

[b,K(f)/K] is a bijection from B to Gal(K(f)/K), then

ΛE,a(P ) =
∏

b∈B

ΘE,a(ψ(b)S + P ).

(iii) If r is an ideal of O and Q ∈ E[r], Q /∈ E[f], then ΛE,a(Q) is a global
unit in K(E[r]).

Proof. The first assertion is clear, (ii) is immediate from Corollary 5.16(ii),
and (iii) follows from Theorem 7.4(iii). ut

7.4 Expansions over C

We continue to suppose that E is defined over K. Fix a Weierstrass model
of E (over K) and let L ⊂ C be the corresponding lattice given by The-
orem 2.3(ii); then OL = L (Proposition 2.6) so we can choose Ω ∈ C×

such that L = ΩO. The map ξ(z) = (℘(z; L), ℘′(z; L)/2) is an isomorphism
C/L

∼−→ E(C), and we define ΘL,a = ΘE,a ◦ ξ, i.e.,

ΘL,a(z) = α−12∆(L)Na−1
∏

u∈a−1L/L−0

(℘(z;L)− ℘(u; L))−6.

Definition 7.9. Define

A(L) = π−1area(C/L),
s2(L) = lim

s→0+

∑

0 6=ω∈L

ω−2|ω|−2s,

η(z; L) = A(L)−1z̄ + s2(L)z,
θ(z; L) = ∆(L)e−6η(z;L)zσ(z; L)12.
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Lemma 7.10. ΘL,a(z) = θ(z; L)Na/θ(z; a−1L).

Proof. Write f(z) = θ(z; L)Na/θ(z; a−1L). Note that although θ(z; L) is not
holomorphic (because of the z̄ in the definition of η(z; L)), f(z) is holomor-
phic. One can check explicitly, using well-known properties of σ(z; L) (see
[dS] §II.2.1), that f(z) is periodic with respect to L and its divisor on C/L
is 12Na[0]− 12

∑
v∈a−1L/L[v].

Thus by Lemma 7.5, ΘL,a = λf for some λ ∈ C×. At z = 0, both functions
have Laurent series beginning α−12∆(L)Na−1z12(Na−1), so λ = 1. ut

Definition 7.11. for k ≥ 1 define the Eisenstein series

Ek(z; L) = lim
s→k

∑

ω∈L

(z̄ + ω̄)k

|z + ω|2s

=
∑

ω∈L

1
(z + ω)k

if k ≥ 3

where the limit means evaluation of the analytic continuation at s = k.

Proposition 7.12.

E1(z; L) = log(σ(z; L))′ − s2(L)z −A(L)−1z̄,

E2(z; L) = ℘(z; L) + s2(L),

Ek(z;L) =
(−1)k

(k − 1)!

(
d

dz

)(k−2)

℘(z; L) if k ≥ 3.

Proof. The third equality is immediate from the definition of ℘(z; L). For the
first two, see [CW1] pp. 242–243 or [GS] Proposition 1.5. ut

Theorem 7.13. For every k ≥ 1,

(
d

dz

)k

log ΘL,a(z) = 12(−1)k−1(k − 1)!(NaEk(z; L)− Ek(z; a−1L)).

Proof. By Lemma 7.10

(
d

dz

)k

log ΘL,a(z) =
(

d

dz

)k−1 (
Na

d

dz
log(θ(z; L))− d

dz
log(θ(z; a−1L))

)
.

The definition of θ shows that

log(θ(z; L)) = log(∆(L))− 6s2(L)z2 − 6A(L)−1zz̄ + 12 log(σ(z;L)).

Now the theorem follows from Proposition 7.12 ut
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Definition 7.14. Define the Hecke L-functions associated to powers of ψ̄ to
be the analytic continuations of the Dirichlet series

L(ψ̄k, s) =
∑ ψ̄k(b)

Nbs
,

summing over ideals b of O prime to the conductor of ψ̄k. If m is an ideal of
O divisible by f and c is an ideal prime to m, we define the partial L-function
Lm(ψ̄k, s, c) be the same formula, but with the sum restricted to ideals of K
prime to m such that [b,K(m)/K] = [c,K(m)/K].

Recall that Ω ∈ C× is such that L = ΩO.

Proposition 7.15. Suppose v ∈ KL/L has order m, where m is divisible by
f. Then for every k ≥ 1,

Ek(v; L) = v−kψ(c)kLm(ψ̄k, k, c)

where c = Ω−1vm.

Proof. Let µ be a generator of m, so that v = αΩ/µ for some α ∈ O prime
to m. For s large,

∑

ω∈L

(v̄ + ω̄)k

|v + ω|2s
=

Nµs

µ̄k

Ω̄k

|Ω|2s

∑

β∈O,β≡α (mod m)

β̄k

|β|2s
.

By Corollary 5.16(i), if we define

ε(β) = ψ(βO)/β

then ε is a multiplicative map from {β ∈ O : β is prime to f} to O×. By
definition of the conductor, ε factors through (O/f)×. Thus if β ≡ α (mod m),

β̄ = ψ̄(βO)
ψ(αO)

α
.

Therefore
∑

β∈O,β≡α (mod m)

β̄k

|β|2s
=

ψ(αO)k

αk

∑

b⊂O,[b,K(m)/K]=[αO,K(m)/K]

ψ̄(b)k

Nbs

=
ψ(c)k

αk
Lm(ψ̄k, s, σc)

and the proposition follows. ut
Definition 7.16. Fix a generator f of f and a set B of ideals of O, prime
to af, such that the Artin map b 7→ [b, K(f)/K] is a bijection from B to
Gal(K(f)/K). Let u = Ω/f ∈ f−1L and define

ΛL,a(z) = ΛL,a,f (z) = ΛE,a,ξ(u)(ξ(z)) =
∏

b∈B

ΘL,a(ψ(b)u + z).

By Proposition 7.8(ii), ΛL,a = ΛE,a ◦ ξ.
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Theorem 7.17. For every k ≥ 1,

(
d

dz

)k

log ΛL,a(z) |z=0= 12(−1)k−1(k − 1)!fk(Na− ψ(a)k)Ω−kLf(ψ̄k, k).

Proof. By Theorem 7.13

(
d

dz

)k

log ΛL,a(z) |z=0 =
∑

b∈B

(
d

dz

)k

log ΘL,a(z) |z=ψ(b)u

= 12(−1)k−1(k − 1)!

(
Na

∑

b∈B

Ek(ψ(b)u; L)−
∑

b∈B

Ek(ψ(b)u; a−1L)

)
.

By Proposition 7.15,
∑

b∈B

Ek(ψ(b)u;L) =
∑

b∈B

(ψ(b)u)−kψ(b)kLf(ψ̄k, k, b) = u−kLf(ψ̄k, k).

By inspection (and Corollary 5.16(i)) Ek(z; a−1L) = ψ(a)kEk(ψ(a)z; L), so
∑

b∈B

Ek(ψ(b)u; a−1L) = u−kψ(a)kLf(ψ̄k, k).

ut

Although we will not use it explicitly, the following theorem of Damerell
is a corollary of this computation.

Corollary 7.18 (Damerell’s Theorem). For every k ≥ 1,

Ω−kL(ψ̄k, k) ∈ K.

Proof. By Proposition 7.8(i), ΛL,a(z) is a rational function of ℘(z; L) and
℘′(z; L) with coefficients in K. Differentiating the relation (from Theorem
2.3)

℘′(z;L)2 = 4℘(z; L)3 + 4a℘(z; L) + 4b

shows that all derivatives ℘(k)(z;L) also belong to K(℘(z; L), ℘′(z; L)), and
hence Λ

(k)
L,a does as well. Thus the corollary follows from Theorem 7.17. ut

7.5 p-adic Expansions

Keep the notation of the previous sections. Fix a prime p of K where E
has good reduction, p - 6. Suppose that our chosen Weierstrass model of E
has good reduction at p and that the auxiliary ideal a is prime to p as well
as 6f. Let Ê be the formal group attached to E over Op as in §3.2, and
x(Z), y(Z) ∈ Op[[Z]] the power series of Theorem 3.7.
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Definition 7.19. Let λÊ(Z) ∈ Z + Z2Kp[[Z]] be the logarithm map of Ê
from Definition 3.10, so that λ′

Ê
(Z) ∈ Op[[Z]]×, and define an operator D on

Op[[Z]] by

D =
1

λ′
Ê

(Z)
d

dZ
.

Proposition 7.20. Identifying (x, y) both with (℘(z; L), 1
2℘′(z; L)) and with

(x(Z), y(Z)) leads to a commutative diagram

K(℘(z), ℘′(z)) ∼←−−−− K(E) ∼−−−−→ K(x(Z), y(Z)) ↪→ Kp((Z))

d
dz

y
y

yD

yD

K(℘(z), ℘′(z)) ∼←−−−− K(E) ∼−−−−→ K(x(Z), y(Z)) ↪→ Kp((Z)).

Proof. Differentiating the relation ℘′(z)2 = 4℘(z)3 + 4a℘(z) + 4b shows that

℘′′(z) = 6℘(x)2 + 2a ∈ Kp(℘(z), ℘′(z)).

Thus, since both vertical maps are derivations, we need only check that
D(x(Z)) = 2y(Z) and D(y(Z)) = 3x(Z)2 + a. (In fact, it would be enough
to check either equality.) Both equalities are immediate from the definition
(Definition 3.10) of ω̂ and λÊ . ut

Definition 7.21. Let Λp,a(Z) be the image of ΛE,a in Kp((Z)) under the
map of Proposition 7.20.

Theorem 7.22. (i) Λp,a(Z) ∈ Op[[Z]]×.
(ii) For every k ≥ 1,

Dk log(Λp,a(Z)) |Z=0 = 12(−1)k−1(k− 1)!fk(Na−ψ(a)k)Ω−kL(ψ̄k, k).

Proof. Fix an embedding K̄ ↪→ K̄p so that we can view x(R) ∈ K̄p when
R ∈ E[f]. Let R be the ring of integers of K̄p.

Consider one of the factors x(ψ(b)S + P ) − x(Q) of ΛE,a(P ), with Q ∈
E[a]−O. The explicit addition law for x(P ) ([Si] §III.2.3) shows that

x(ψ(b)S + P )− x(Q) =
(y(P )− y(ψ(b)S))2

(x(P )− x(ψ(b)S))2
− x(P )− x(ψ(b)S)− x(Q).

By Lemmas 7.3(ii) and 3.5, x(ψ(b)S), y(ψ(b)S), x(Q) ∈ R. Substituting x(Z)
for x(P ), y(Z) for y(P ) and using the expansions in Theorem 3.7 to show
that

x(Z) ∈ Z−2 + ZOp[[Z]], y(Z) ∈ −Z−3 +Op[[Z]]

gives
x(ψ(b)S + P )− x(Q) 7→ gb,Q(Z) ∈ R[[Z]]
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under the map of Proposition 7.20, where gb,Q satisfies

gb,Q(0) = x(ψ(b)S)− x(Q) ∈ R×

by Lemma 7.3(iii), so gb,Q(Z) ∈ R[[Z]]×. Also ∆(E), α ∈ O×p since our
Weierstrass equation has good reduction at p and p - a. Thus

Λp,a(Z) = ∆(E)(Na−1)#(B)α−12#(B)
∏

b,Q

gb,Q(Z)−6 ∈ R[[Z]]×.

Since we already know Λp,a ∈ Kp((Z)), this proves (i).
The second assertion is immediate from Theorem 7.17 and Proposition

7.20. ut

8 Euler Systems

In this section we introduce Kolyvagin’s concept of an Euler system (of which
the elliptic units of §7 are an example) and we show how to use an Euler
system to construct certain principal ideals in abelian extensions of K. In
the next section we use these principal ideals (viewed as relations in ideal
class groups) to bound the ideal class groups of abelian extensions of K.

As in the previous section, fix an imaginary quadratic field K and an
elliptic curve E defined over K with complex multiplication by the ring of
integers O of K. Let f be the conductor of the Hecke character ψ of E, and
fix a generator f of f.

Fix a prime p of K not dividing 6f, and for n ≥ 1 let Kn = K(E[pn]). Let
p denote the rational prime below p. Fix a nontrivial ideal a of O prime to
6fp. Let R = R(a) denote the set of squarefree ideals of O prime to 6fap, and
if r ∈ R let Kn(r) = Kn(E[r]) = K(E[rpn]). The letter q will always denote
a prime of R.

Also as in the previous section, fix a Weierstrass model of E which is
minimal at p, let L = ΩO ⊂ C be the corresponding lattice given by Theorem
2.3(ii), and define ξ = (℘( · ; L), ℘′( · ; L)/2) : C/L

∼−→ E(C).

8.1 The Euler System

Definition 8.1. If r ∈ R and n ≥ 0 define

ηn(r) = η(a)
n (r) = ΛE,a,ξ(Ω/f)(ξ(ψ(pnr)−1Ω)) = ΛL,a(ψ(pnr)−1Ω).

where ΛL,a is as in Definition 7.16.

Proposition 8.2. Suppose r ∈ R and n ≥ 1.

(i) ηn(r) is a global unit in Kn(r).
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(ii) If q is a prime and rq ∈ R, then

NKn(rq)/Kn(r)ηn(qr) = ηn(r)1−Frob−1
q .

(iii) NKn+1(r)/Kn(r)ηn+1(r) = ηn(r).

Proof. Assertion (i) is just a restatement of Proposition 7.8(iii), and (ii) and
(iii) are immediate from Corollary 7.7. ut

8.2 Kolyvagin’s Derivative Construction

Definition 8.3. Write Gr = Gal(Kn(r)/Kn). By Corollary 5.20(ii), Gr is
independent of n ≥ 1, and we have natural isomorphisms

Gr ====
∏

q|r Gqy
y

(O/r)× ====
∏

q|r(O/q)×.

If q | r this allows us to view Gq either as a quotient or a subgroup of Gr.
By Corollary 5.20 if qr ∈ R then Kn(qr)/Kn(r) is cyclic of degree Nq − 1,
totally ramified at all primes above q and unramified at all other primes.

For every r ∈ R define

Nr =
∑

σ∈Gr

σ ∈ Z[Gr]

so we clearly have
Nr =

∏

q|r
Nq.

For every n ≥ 1 and r ∈ R, let xn,r be an indeterminate and define Xn,r

to be the Gal(Kn(r)/K)-module Yn,r/Zn,r where

Yn,r =
⊕

s|r
Z[Gal(Kn(s)/K)]xn,s,

Zn,r =
∑

qs|r
Z[Gal(Kn(r)/K)]

(
Nqxn,qs − (1− Frob−1

q )xn,s

) ⊂ Yn,r.

In other words, Xn,r is the quotient of the free Z[Gal(Kn(r)/K)]-module on
{xn,s : s | r} by the relations

– Gr/s acts trivially on xn,s, and
– Nqxn,qs = (1− Frob−1

q )xn,s if qs | r.
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For every prime q ∈ R fix once and for all a generator σq of Gq and define

Dq =
Nq−2∑

i=1

iσi
q ∈ Z[Gq]

and for r ∈ R
Dr =

∏

q|r
Dq ∈ Z[Gr].

If M is a power of p and n ≥ 1 define Rn,M ⊂ R to be the set of ideals
r ∈ R such that for every prime q dividing r,

– q splits completely in Kn/K

– Nq ≡ 1 (mod M).

Proposition 8.4. Suppose M is a power of p, n ≥ 1, and r ∈ Rn,M .

(i) Xn,r has no Z-torsion.
(ii) Drxn,r ∈ (Xn,r/MXn,r)Gr .

Proof. For every prime q ∈ R and divisor s of r, define

Bq = Gq − {1},

Bs =
∏

q|s
Bq =





∏

q|s
gq : gq ∈ Bq



 ⊂ Gr,

B = ∪s|rBsxn,s ⊂ Xn,r

Then one can show by an easy combinatorial argument (see [Ru2] Lemma
2.1) that Xn,r is a free Z-module with basis B, which proves (i).

Note that
(σq − 1)Dq = Nq− 1−Nq.

We will prove (ii) by induction on the number of primes dividing r. Suppose
q | r, r = qs. Then

(σq − 1)Drxn,r = (σq − 1)DqDsxn,r

= (Nq− 1)Dsxn,r − (1− Frob−1
q )Dsxn,s.

Since q ∈ Rn,M , M | Nq− 1 and Frobq ∈ Gs, so by the induction hypothesis

(σq − 1)Drxn,r ∈ MXn,r.

Since the σq generate Gr, this proves the proposition. ut
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Definition 8.5. An Euler system is a collection of global units

{η(n, r) ∈ Kn(r)× : n ≥ 1, r ∈ R}
satisfying

NKn(qr)/Kn(r)η(n, qr) = η(n, r)1−Frob−1
q , (8)

NKn+1(r)/Kn(r)η(n + 1, r) = η(n, r). (9)

Equivalently, an Euler system is a Galois equivariant map

η : lim−→
n,r

Xn,r →
⋃
n,r

Kn(r)×

such that η(xn,r) is a global unit for every n and r. We will use these two
definitions interchangeably.

For example, by Proposition 8.2 we can define an Euler system by

η(n, r) = ηn(r).

Proposition 8.6. Suppose η is an Euler system and q ∈ R is a prime. Write
Nq−1 = dpk with d prime to p. Then for every n ≥ 1 and every r ∈ R prime
to q,

η(n, qr)d ≡ η(n, r)dFrob−1
q

modulo every prime above q.

Proof. Suppose m ≥ n, and let G = Gal(Km(qr)/Kn(qr)). Fix a prime Q of
Km(qr) above q, and let H be the decomposition group of q in G. Let H ′ ⊂ G
be a set of coset representatives for G/H, and define

NH =
∑

γ∈H

γ, NH′ =
∑

γ∈H′
γ

so that NHNH′ =
∑

γ∈G γ.
Since q is totally ramified in Km(qr)/Km(r), the Euler system distribution

relation (8) reduces modulo Q to

η(m, qr)Nq−1 ≡ (η(m, r)Frob−1
q )Nq−1 (mod Q).

On the other hand, since H is generated by the Frobenius of q, if h denotes
the degree of the residue field extension at q in Kn(r)/K then (9) reduces to

η(n, r) = η(m, r)NH′NH ≡ (η(m, r)NH′ )t (mod Q)

and similarly η(n, qr) ≡ (η(m, qr)NH′ )t (mod Q), where

t =
#(H)−1∑

i=0

(Nqh)i ≡ #(H) (mod Nq− 1).

Recall that pk is the highest power of p dividing Nq − 1. Since the decom-
position group of q in K∞/K is infinite, for m sufficiently large we will have
pk | t, and then combining the congruences above proves the proposition. ut
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For the Euler system of elliptic units, one can prove directly, using Lemma
7.3, that the congruence of Proposition 8.6 holds with d = 1.

Definition 8.7. Suppose η is an Euler system, n ≥ 1 and r ∈ R. Using the
map Xn,r → Kn(r)× corresponding to η, we define a 1-cocycle c = cη,n,r :
Gr → Kn(r)× by

c(σ) = η

(
(σ − 1)Drxn,r

M

)
for σ ∈ Gr.

This is well defined by Proposition 8.4. Since H1(Gr,Kn(r)×) = 0, there is a
β ∈ Kn(r)× such that c(σ) = βσ/β for every σ ∈ Gr. Then η(xn,r)Dr/βM ∈
K×

n and we define

κn,M (r) = η(xn,r)Dr/βM ∈ K×
n /(K×

n )M .

Since β is uniquely determined modulo K×
n , κn,M (r) is independent of the

choice of β.

Remark 8.8. It is quite easy to show for every Euler system η, every n, and
every r ∈ Rn,M that η(n, r)(σ−1)Dr is an M -th power (Proposition 8.4(ii)).
The reason for introducing the “universal Euler system” Xn,r is to show that
η(n, r)(σ−1)Dr has a canonical M -th root, even when Kn(r) contains M -th
roots of unity (Proposition 8.4(i)). This fact was used to construct the cocycle
c above.

We next want to determine the ideal generated by κn,M (r) (modulo M -th
powers).

Definition 8.9. Fix n ≥ 1, a power M of p, and temporarily write F = Kn,
RF,M = Rn,M . Let OF denote the ring of integers of F and

IF = I = ⊕QZQ

the group of fractional ideals of F , written additively. For every prime q of
K let

IF,q = Iq = ⊕Q|qZQ,

and if y ∈ F× let (y) ∈ I denote the principal ideal generated by y, and (y)q,
[y], and [y]q the projections of (y) to Iq, I/MI, and Iq/MIq, respectively.
Note that [y] and [y]q are well defined for y ∈ F×/(F×)M .

Suppose q ∈ RF,M , Q is a prime of F above q, and Q̄ is a prime of K̄
above Q. Recall that Q is completely split in F/K, and totally ramified of
degree Nq − 1 = NQ − 1 in F (q)/F . Fix a lift σQ of σq to GK so that σQ

belongs to the inertia group of Q̄. Then there is an isomorphism

Z/MZ ∼−→ µM
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given by a 7→ (πa/M )1−σQ where π ∈ K is a generator of q. Let FrobQ̄ ∈ GFQ

denote a Frobenius of Q and define

φQ : F×Q /(F×Q )M → Z/MZ

to be the image of FrobQ under the composition

GFQ
→ Hom(F×Q , µM ) ∼−→ Hom(F×Q ,Z/MZ)

where the first map is the Kummer map and the second is induced by the
isomorphism above. Concretely, since σQ belongs to the inertia group, we
have φQ(α) = a where a is characterized by

(α1/M )FrobQ−1 = (πa/M )1−σQ ≡ (β1/M )1−σQ (10)

modulo the maximal ideal of F̄Q, where β ∈ F̄Q
× is an element satisfying

ordQ(β) = a.
Finally, define

φq : F×/(F×)M → Iq/MIq

by φq(α) =
∑

Q|q φQ(α)Q. It is not difficult to check that φq is Gal(F/K)-
equivariant, and that φq induces an isomorphism

φq : (OF /qOF )×/((OF /qOF )×)M ∼−→ Iq/MIq.

Proposition 8.10. Suppose η is an Euler system, n ≥ 1, r ∈ Rn,M and q
is a prime of K.

(i) If q - r then [κn,M (r)]q = 0.
(ii) If q | r then [κn,M (r)]q = φq(κn,M (r/q)).

Proof. Suppose first that q - r. Then q is unramified in Kn(r)/Kn, and
by definition κn,M (r) is a global unit times an M -th power in Kn(r)×, so
ordQ(κn,M (r)) ≡ 0 (mod M) for every prime Q of Kn above q. This proves
(i).

Now suppose q | r, say r = qs. By definition

κn,M (r) = η(xn,r)Dr/βM
r , κn,M (s) = η(xn,s)Ds/βM

s

where βr ∈ Kn(r)×, βs ∈ Kn(s)× satisfy

βσ−1
r = η((σ − 1)Drxn,r/M), βσ−1

s = η((σ − 1)Dsxn,s/M)

for every σ ∈ Gr.
We will use (10) to evaluate φq(κ(s)). Fix a prime Q of Kn above q, let

σQ be as in Definition 8.9, and let d be the prime-to-p-part of Nq − 1 as in
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Proposition 8.6. Modulo every prime above Q we have

(κn,M (r)d/M )1−σQ = ((η(xn,r)Dr)1/M/βr)d(1−σQ) ≡ β
d(σq−1)
r

= η((σq − 1)Drxn,r/M)d

= η((Nq− 1−Nq)Dsxn,r/M)d

= η((Nq− 1)Dsxn,r/M)dη((Frob−1
q − 1)Dsxn,s/M)d

= (η(xn,r)Ds)d(Nq−1)/M/β
d(1−Frob−1

q )
s

= (η(xn,r)Ds)Frob−1
q d(Nq−1)/M/β

d(1−Frob−1
q )

s

≡ ((η(xn,s)Ds/βM
s )1/M )d(1−Frob−1

Q )

≡ (κn,M (s)d/M )FrobQ−1

using Proposition 8.6 for the second-to-last congruence. By (10) it follows
that

dφQ(κn,M (s)) = dordQ(κn,M (r)),

and since d is prime to p, (ii) follows. ut

9 Bounding Ideal Class Groups

In this section we describe Kolyvagin’s method of using the Euler system of
elliptic units, or rather the principal ideals deduced from elliptic units as in
§8.2, to bound the size of certain ideal class groups. For a similar argument
in the case of cyclotomic units and real abelian extensions of Q, see [Ru1].

Keep the notation of the previous section. Let F = K1 = K(E[p]) and
let µF denote the roots of unity in F . Let ∆ = Gal(F/K), so ∆ ∼= (O/p)×

is cyclic of order p− 1 or p2 − 1.
Since #(∆) is prime to p, the group ring Zp[∆] is semisimple, i.e.,

Zp[∆] ∼=
⊕

χ∈Ξ

Rχ

where Ξ denotes the set of all irreducible Fp-representations of ∆ and Rχ

denotes the corresponding direct summand of Zp[∆]. (We will also refer to
elements of Ξ as irreducible Zp-representations of ∆.) Since #(∆) divides
p2 − 1, we have two cases:

– dim(χ) = 1, Rχ = Zp,
– dim(χ) = 2, Rχ is the ring of integers of the unramified quadratic exten-

sion of Qp, and χ splits into two one-dimensional pieces over Op.

If χ ∈ Ξ and B is a Z[∆]-module, we let M (p) denote the p-adic completion
of M and

Mχ = M (p) ⊗Zp[∆] Rχ.
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Then M (p) = ⊕χ∈ΞMχ, so we can view Mχ either as a quotient of M or a
submodule of M (p). If m ∈ M we write mχ for the projection of m into Mχ.

Lemma 9.1. For every nontrivial χ ∈ Ξ, (O×F /µF )χ is free of rank one over
Rχ.

Proof. The Dirichlet unit theorem gives an exact sequence

0 → O×F ⊗Q → Q[∆] → Q → 0

and the lemma follows by taking χ-components. ut

Let A denote the ideal class group of F , and fix a χ ∈ Ξ. We wish to
bound the size of Aχ. Fix a power M of p, which we will later take to be
large, and set FM = F (µM ).

Lemma 9.2. The composition

Hom(A,Z/MZ) → Hom(GF ,Z/MZ) → Hom(GFM ,Z/MZ),

given by class field theory and restriction to GFM , is injective.

Proof. The first map is clearly injective, and the kernel of the second is
equal to Hom(Gal(FM/F ),Z/MZ). Thus to prove the lemma it suffices to
show that there is no unramified p-extension of F in FM . But the p-part of
Gal(FM/F ) is Gal(FM/F (µp)), which is totally ramified at all primes above
p. This completes the proof. ut

Lemma 9.3. The map

F×/(F×)M → FM
×/(FM

×)M

is injective.

Proof. Kummer theory shows that F×/(F×)M ∼= H1(F, µM ) and similarly
for FM , so the kernel of the map in the lemma is H1(FM/F, µM ). Since
Gal(FM/F ) is cyclic and acts faithfully on µM , and p > 2, it is easy to check
that H1(FM/F, µM ) = 0. (See also Lemma 6.1.) ut

Write RF,M for R1,M , the set of primes of K defined in §8.

Proposition 9.4. Suppose κ ∈ F×/(F×)M and α ∈ Hom(A,Z/MZ), α 6=
0. Then there is a prime q ∈ RF,M and a prime Q of F above q such that

(i) α(c) 6= 0, where c denotes the class of Q in A,
(ii) [κ]q = 0 and for every d ∈ Z, dφq(κ) = 0 ⇔ κd ∈ (F×)M .
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Proof. Let t be the order of κ in F×/(F×)M , and let ρ ∈ Hom(GFM
,µM )

be the image of κ under the Kummer map. We view α as a map on GFM via
the map of Lemma 9.2. Define two subgroups of GFM

Hα = {γ ∈ GFM
: α(γ) = 0},

Hκ = {γ ∈ GFM
: ρ(γ) has order less than t in µM}.

Since α 6= 0, Lemma 9.2 shows that Hα 6= GFM
. Similarly it follows from

Lemma 9.3 that Hκ 6= GFM . Since a group cannot be a union of two proper
subgroups, we can choose a γ ∈ GFM

, γ /∈ Hα ∪Hκ. Let L be a finite Galois
extension of F containing FM such that both ρ and α are trivial on GL. By
the Cebotarev theorem we can choose a prime Q̃ of L, not dividing 6afp and
such that [κ]q = 0, whose Frobenius in L/K is γ. Let Q and q denote the
primes of F and K, respectively, below Q̃. We will show that these primes
satisfy the conditions of the proposition.

First, the fact that γ fixes F (µM ) means that q splits completely in
F (µM ) and thus q ∈ RF,M .

The class field theory inclusion Hom(A,Z/MZ) ↪→ Hom(GF ,Z/MZ)
identifies α(c) with α(FrobQ) = α(γ), so (i) follows from the fact that γ /∈ Hα.

Since γ /∈ Hκ, (κ1/M )FrobQ−1 is a primitive t-th root of unity. Therefore κ
has order t(Nq− 1)/M modulo Q, and hence has order at least t (and hence
exactly t) in (OF /qOF )×/((OF /qOF )×)M . Since φq is an isomorphism on
(OF /qOF )×/((OF /qOF )×)M , this proves (ii). ut

Suppose η is an Euler system as defined in Definition 8.5. Define C =
Cη ⊂ O×F to be the group generated over Z[∆] by µF and η(1,O).

Theorem 9.5. With notation as above, if η is an Euler system and χ is an
irreducible Zp-representation of ∆ then

#(Aχ) ≤ #((O×F /Cη)χ).

Proof. If χ is the trivial character then Aχ is the p-part of the ideal class
group of K, which is zero. Hence we may assume that χ 6= 1.

By Lemma 9.1
(O×F /C)χ ∼= Rχ/mRχ

for some m ∈ Rχ. If m = 0 then there is nothing to prove, so we may assume
m 6= 0. Choose M large enough so that M/m annihilates A. For r ∈ RF,M we
will write κ(r) for the element κ1,M (r) ∈ F×/(F×)M constructed in Definition
8.7.

Number the elements of Hom(Aχ,Z/MZ) ⊂ Hom(A,Z/MZ) so that

Hom(Aχ,Z/MZ) = {α1, . . . , αk}.

Using Proposition 9.4 we choose inductively a sequence of primes q1, . . . , qk ∈
RF,M and Qi of F above qi such that, if ci denotes the class of Qi in A and
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ri =
∏

j≤i qj for 0 ≤ i ≤ k,

αi(ci) 6= 0, (11)

dφqi(κ(ri−1)χ) = 0 ⇔ (κ(ri−1)χ)d = 0 ∈ F×/(F×)M (12)

(just apply Proposition 9.4 with κ = κ(ri−1)χ and α = αi to produce qi and
Qi).

First we claim that the classes {cχ
i } generate Aχ. For if not, then there

is an α ∈ Hom(Aχ,Z/MZ) such that α(cj) = 0 for every j. But α = αi for
some i, so (11) shows this is not the case.

If 1 ≤ i ≤ k let si denote the order of cχ
i in Aχ/〈cχ

1 , . . . , cχ
i−1〉. Since the

cχ
i generate Aχ we have

#(Aχ) =
k∏

i=1

[Rχ : siRχ].

If 0 ≤ i ≤ k − 1 let ti denote the order of κ(ri)χ in F×/(F×)M . By (12)
and Proposition 8.10(ii), for i ≥ 1 the order of [κ(ri)χ]qi is ti−1. In particular
it follows that ti−1 | ti. Since κ(r0) is the image of η(1,O) in O×F /(O×F )M ,
the exact sequence

0 → Rχκ(r0)/µF ∩Rχκ(r0) → (O×F /µF (O×F )M )χ → (O×F /C)× → 0

shows that M | t0m.
For each i we can choose νi ∈ F×/(F×)M such that ν

M/ti

i = κ(ri)χζ with
ζ ∈ µF . In particular

(M/ti)[νi]qi = [κ(ri)χ]qi

so [νi]qi has order ti−1M/ti in (Iq/MIq)χ ∼= Rχ/MRχ. Thus, using Propo-
sition 8.10(i), there is a unit u ∈ R×χ such that

(νi) ≡ u(ti/ti−1)q
χ
i (mod Iq1 , . . . , Iqi−1 , tiI).

We know that t0 | ti and (M/m) | t0. Thus by our choice of M , ti annihilates
A and we conclude that

(ti/ti−1)c
χ
i = 0 in Aχ/〈cχ

1 , . . . , cχ
i−1〉.

Therefore si | (ti/ti−1) for every i ≥ 1, so

#(Aχ) =
k∏

i=1

[Rχ : siRχ] divides [t0Rχ : tkRχ].

Since tk | M and M | t0m, this index divides [Rχ : mRχ]. This proves the
theorem. ut
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Corollary 9.6. Let Ca denote the group of (elliptic) units of F generated
over Zp[∆] by µF and by η

(a)
1 . If χ is an irreducible Zp-representation of ∆

then
#(Aχ) divides #((O×F /Ca)χ).

Proof. Apply Theorem 9.5 with the Euler system η(n, r) = η
(a)
n (r). ut

Remark 9.7. If CF denotes the full group of elliptic units of F (see for example
[Ru2] §1), then one can combine Theorem 9.5 with a well-known argument
using the analytic class number formula to prove that for every χ,

#(Aχ) = #((O×F /CF )χ).

See Theorem 3.3 of [Ru2].

Corollary 9.8. With notation as above, if (η(a)
1 )χ /∈ µχ

F ((O×F )χ)p then Aχ =
0.

Proof. Immediate from Corollary 9.6 and Lemma 9.1. ut

10 The Theorem of Coates and Wiles

Keep the notation of the previous sections. In this section we will prove the
following theorem.

Theorem 10.1 (Coates-Wiles [CW1]). If L(ψ̄, 1) 6= 0 then E(K) is fi-
nite.

Suppose for the rest of this section that p is a prime of K not dividing
f, of residue characteristic p > 7 (see remark 10.3 below). As in §9 we let
F = K(E[p]), ∆ = Gal(F/K) and A is the ideal class group of F .

Lemma 10.2. There is an ideal a of O, prime to 6pf, such that Na 6≡ ψ(a)
(mod p).

Proof. By Corollary 5.18, E[p̄] 6⊂E(K). Choose a prime q of K, not dividing
6pf, such that [q, K(E[p̄])/K] 6= 1. By Corollary 5.16(ii) we deduce that
ψ(q) 6≡ 1 (mod p̄), and so ψ̄(q) 6≡ 1 (mod p). Since ψ(q)ψ̄(q) = Nq, the
lemma is satisfied with a = q. ut
Remark 10.3. Lemma 10.2 is not in general true without the assumption
p > 7, since for small p it may happen that E[p̄] ⊂ E(K).

By Corollary 5.20(iv), F/K is totally ramified at p. Let P denote the
prime of F above p. By Lemma 3.6 and Corollary 5.16 E[p] ⊂ E1(FP), so
the isomorphism of Corollary 3.8 restricts to an isomorphism

E[p] ∼−→ Ê[p] ⊂ Ê(FP)

where Ê is the formal group attached to E. Let OF,P denote the completion
of OF at P.
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Lemma 10.4. The map

E[p] ∼−→ Ê[p] 1+·−→ (1 + POF,P)/(1 + P2OF,P)

is a ∆-equivariant isomorphism.

Proof. The map in question is a well-defined homomorphism, and by Lemma
7.3 it is injective. Both groups have order Np, so it is an isomorphism. The
∆-equivariance is clear. ut

Now fix an ideal a satisfying Lemma 10.2, a generator Ω of the period
lattice of E as in §7.4, and a generator f of the conductor f. With these
choices define the elliptic units ηn(r) as in §8.1. Let η = η1(O), a global
(elliptic) unit of F which depends on the choice of a.

Definition 10.5. Define
δ : O×F,P → E[p]

to be the composition of the natural projection

O×F,P³(1 + POF,P)/(1 + P2OF,P)

with the inverse of the isomorphism of Lemma 10.4.

Recall that by Corollary 7.18, L(ψ̄, 1)/Ω ∈ K.

Proposition 10.6. L(ψ̄, 1)/Ω is integral at p, and

L(ψ̄, 1)/Ω ≡ 0 (mod p) ⇔ δ(η) = 0.

Proof. Let P = (℘(Ω/ψ(p); ΩO), ℘′(Ω/ψ(p); ΩO)/2) ∈ E[p] and

z = −x(P )/y(P ) ∈ P,

the image of P in Ê[p]. Then η = Λp,a(z), where Λp,a is the power series of
Definition 7.21.

By Theorem 7.22, Λp,a(0) ∈ O×p , 12f(Na− ψ(a))(L(ψ̄, 1)/Ω) ∈ Op, and

η ≡ Λp,a(0)(1 + 12f(Na− ψ(a))(L(ψ̄, 1)/Ω)z) (mod P2).

Thus
δ(η) = 12f(Na− ψ(a))(L(ψ̄, 1)/Ω)P

and with our choice of a, 12f(Na−ψ(a)) ∈ O×p . This proves the proposition.
ut

Definition 10.7. Let χE denote the representation of ∆ on E[p]; by Corol-
lary 5.20 χE is Fp-irreducible. Then in the notation of §9 we have E[p] ∼=
RχE /pRχE as ∆-modules.
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Theorem 10.8. Suppose L(ψ̄, 1)/Ω is a unit at p. Then

AχE = 0.

Proof. Since the map δ is ∆-equivariant,

δ(ηχE ) = δ(η)χE = δ(η) 6= 0

by Proposition 10.6. Hence

ηχE /∈ ((O×F )χE )p.

The Weil pairing (see [Si] Proposition III.8.1) gives a Galois-equivariant
isomorphism

E[p] ∼= Hom(E[p], µp).

If µχE

F were nontrivial, then E[p]GK would be nontrivial, and this is impos-
sible by Corollary 5.18. Now the theorem follows from Corollary 9.8. ut

Lemma 10.9. Suppose p splits into two primes in K and TrK/Qψ(p) 6= 1.
Then

(i) µp 6⊂ FP ,
(ii) (O×F,P)χE is free of rank one over RχE .

Proof. By Theorem 5.15(ii), [ψ(p), FP/Kp] = 1. On the other hand, class
field theory over Q shows that [p,Qp(µp)/Qp] = 1. Thus we have (again
using Theorem 5.15(ii))

µp ⊂ FP ⇒ FP = Kp(µp) ⇒ [p/ψ(p), FP/Kp] = 1

⇒ p/ψ(p) ≡ 1 (mod p)
⇒ TrK/Qψ(p) ≡ 1 (mod p)
⇒ TrK/Qψ(p) = 1,

the last implication because |TrK/Qψ(p)| ≤ 2
√

p < p− 1. This proves (i).
We have isomorphisms

O×F,P ⊗Qp
∼−→ OF,P ⊗Qp

∼= Kp[∆],

the first one given by the p-adic logarithm map. Together with (i) this proves
(ii). ut

Theorem 10.10. Suppose L(ψ̄, 1)/Ω is a unit at p, p splits into two primes
in K, and TrK/Qψ(p) 6= 1. Then the natural (injective) map

(O×F )χE → (O×F,P)χE

is surjective.
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Proof. As in the proof of Theorem 10.8, δ(ηχE ) = δ(η). Thus by Proposition
10.6 (O×F )χE 6⊂ ((O×F,P)χE )p, so the Theorem follows from Lemma 10.9. ut
Proof (of the Coates-Wiles Theorem 10.1). Using the Cebotarev theorem we
can find infinitely many primes p which split in K and such that TrK/Qψ(p) 6=
1. Choose one which does not divide 6f or L(ψ̄, 1)/Ω. Then by Theorems 10.8
and 10.10 and Corollary 6.10, the Selmer group Sψ(p)(E) = 0. In particular
E(K)/pE(K) = 0, so (using the Mordell-Weil Theorem 4.6), E(K) is finite.

ut
Remark 10.11. This proof also shows that for primes p satisfying the hy-
potheses of Theorem 10.10, the p-part of the Tate-Shafarevich group X(E)
is trivial.

Using the Explicit Reciprocity Law of Wiles ([Wil] or [dS] §I.4) one can
show that δ = −δ1 where δ1 is the map of Lemma 6.8. Together with Propo-
sition 10.6, Theorem 10.8 and Corollary 6.10, this shows that Sψ(p)(E) = 0
for every p not dividing 2 · 3 · 5 · 7 · f · (L(ψ̄, 1)/Ω). We will prove a stronger
version of this (Corollary 12.13 and Theorem 12.19) in §12.

11 Iwasawa Theory and the “Main Conjecture”

In order to study the Selmer group under more general conditions than in §10,
we need to prove Iwasawa-theoretic versions (Theorem 11.7 and Corollary
11.8 below) of Theorem 9.5 and Remark 9.7. As in the previous sections,
we fix an elliptic curve E defined over an imaginary quadratic field K, with
EndK(E) = O, the ring of integers of K. We fix a prime p of K where E
has good reduction, and for simplicity we still assume that p > 7 (in order
to apply Lemma 10.2).

Write Kn = K(E[pn]), n = 0, 1, 2, . . . ,∞, and let G∞ = Gal(K∞/K).
By Corollary 5.20(ii), we have

G∞ ∼= O×p ∼= ∆× Γ

where
∆ ∼= Gal(K1/K) ∼= (O/p)×

is the prime-to-p part of G∞ and

Γ = Gal(K∞/K1) ∼= 1 + pOp
∼= Z[Kp:Qp]

p

is the p-part.

11.1 The Iwasawa Algebra

Define the Iwasawa algebra

Λ = Zp[[G∞]] = lim←−
n

Zp[Gal(Kn/K)] = lim←−
n

Zp[∆][Gal(Kn/K1)].
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Then
Λ =

⊕

χ∈Ξ

Λχ

where Ξ is the set of irreducible Zp-representations of ∆ as in §9 and

Λχ = Λ⊗Zp[∆] Rχ
∼= Rχ[[Γ ]].

The following algebraic properties of the Iwasawa algebra and its modules
are well-known. For proofs, see for example [Iw] and [Se].

For every irreducible Zp-representation χ of ∆, Λχ is a complete local
noetherian ring, noncanonically isomorphic to a power series ring in [Kp : Qp]
variables over Rχ. In particular Λ is not an integral domain, but rather is a
direct sum of local integral domains. Let M denote the (finite) intersection
of all maximal ideals of Λ, i.e., M is the kernel of the natural map Λ³Fp[∆].

A Λ-module M will be called a torsion Λ-module if it is annihilated by
a non-zero-divisor in Λ. A Λ-module will be called pseudo-null if it is anni-
hilated by an ideal of height at least two in Λ. If Γ ∼= Zp then a module is
pseudo-null if and only if it is finite.

If M is a finitely generated torsion Λ-module, then there is an injective
Λ-module homomorphism

r⊕

i=1

Λ/fiΛ ↪→ M

with pseudo-null cokernel, where the elements fi ∈ Λ can be chosen to satisfy
fi+1 | fi for 1 ≤ i ≤ r. The elements fi are not uniquely determined, but the
ideal

∏
i fiΛ is. We call the ideal

∏
i fiΛ the characteristic ideal char(M) of

the torsion Λ-module M . The characteristic ideal is multiplicative in exact
sequences: if 0 → M ′ → M → M ′′ → 0 is an exact sequence of torsion
Λ-modules then

char(M) = char(M ′)char(M ′′).

11.2 The Iwasawa Modules

Define

An = the p-part of the ideal class group of Kn,
Un = the p-adic completion of the local units of Kn⊗Kp (equivalently, the

1-units of Kn ⊗Kp),
En = the global units of Kn,
Ēn = the p-adic completion of En (equivalently, since Leopoldt’s conjecture

holds for Kn, the closure of the image of En in Un),
Cn = the elliptic units of Kn, the subgroup of En generated over the group

ring Z[Gal(Kn/K)] by the η
(a)
n = η

(a)
n (O) (see Definition 8.1) for all

choices of ideal a prime to 6pf, and the roots of unity in Kn,
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C̄n = the p-adic completion of Cn (equivalently, the closure of the image of
Cn in Un),

and
A∞ = lim←−

n

An, U∞ = lim←−
n

Un, E∞ = lim←−
n

Ēn, C∞ = lim←−
n

C̄n,

inverse limits with respect to norm maps. Also define X∞ = Gal(M∞/K∞)
where M∞ is the maximal abelian p-extension of K∞ unramified outside of
the prime above p.

Class field theory identifies A∞ with Gal(L∞/K∞), where L∞ is the
maximal everywhere-unramified abelian p-extension of K∞, and identifies
the inertia group in X∞ of the unique prime above p with U∞/E∞. Thus
there is an exact sequence of Λ-modules

0 → E∞/C∞ → U∞/C∞ → X∞ → A∞ → 0. (13)

For every n ≥ 0, let Λn = Zp[Gal(Kn/K)] and let Jn ⊂ Λ denote the
kernel of the restriction map Λ → Λn. In particular J0 is the augmentation
ideal of Λ.

Lemma 11.1. For every n ≥ 1, the natural map

A∞/JnA∞ → An

is an isomorphism.

Proof. When Γ = Zp this is a standard argument going back to Iwasawa
[Iw], using the fact that only one prime of K ramifies in K∞ and it is totally
ramified.

For the general case, consider the diagram of fields below, where Ln is
the maximal unramified abelian p-extension of Kn, and L′n is the fixed field
of JnA∞ in L∞. Since K∞/Kn is totally ramified above p, K∞ ∩ Ln = Kn,
and so Gal(K∞Ln/K∞) = An and the map A∞/JnA∞ → An is just the
restriction map. We will show that K∞Ln = L′n, and the lemma will follow.

Since Gal(K∞/Kn) acts on Gal(L∞/K∞) by conjugation, JnA∞ is gen-
erated by commutators

Gal(L∞/L′n) = [Gal(L∞/Kn),Gal(L∞/K∞)].

Such commutators are trivial on Ln, so K∞Ln ⊂ L′n.
On the other hand, only the unique prime above p ramifies in the abelian

extension L′n/Kn, and it is totally ramified in K∞/Kn. If we write I for
the inertia group of this prime in Gal(L′n/Kn), the inverse of the projection
isomorphism I ∼−→ Gal(K∞/Kn) gives a splitting of the exact sequence

0 → A∞/JnA∞ → Gal(L′n/Kn) → Gal(K∞/Kn) → 0.

It follows that L′n
I is an abelian, everywhere-unramified p-extension of Kn,

and hence L′n
I ⊂ Ln and so L′n = K∞Ln. ut
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Proposition 11.2. A∞ is a finitely-generated torsion Λ-module.

Proof. By Lemma 11.1, A∞/JnA∞ is finite for every n, and the proposition
follows. ut

Proposition 11.3. (i) X∞ is a finitely-generated Λ-module and for every
χ

rankΛχXχ
∞ = [Kp : Qp]− 1.

(In particular if Kp = Qp then X∞ is a finitely-generated torsion Λ-
module.)

(ii) X∞ has no nonzero pseudo-null submodules.

Proof. See [Gr]. ut

Proposition 11.4. U∞ is a finitely-generated, torsion-free Λ-module, and
for every χ

rankΛχ(Uχ
∞) = [Kp : Qp].

Further, if [Kp : Qp] = 2 then UχE∞ is free of rank 2 over Λχ.

Proof. See [Iw] §12 or [Win]. ut

Proposition 11.5. E∞ is a finitely-generated Λ-module, and for every χ

rankΛχ(Eχ
∞) = 1.

Proof. The natural map E∞ → U∞ is injective, so the proposition follows
from (13) and Propositions 11.2, 11.3 and 11.4 ut

Proposition 11.6. CχE∞ is free of rank one over ΛχE .
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Proof. Choose an ideal a of O such that ψ(a) 6≡ Na (mod p) (Lemma 10.2).
We will show that CχE∞ is generated over ΛχE

by {(η(a)
n )χE}n with this choice

of a. Suppose b is some other ideal of O prime to 6pf. It follows from Theorem
7.4(ii) and Lemma 7.10 that for every n

(η(a)
n )σb−Nb = (η(b)

n )σa−Na

where σa = [a,Kn/K], σb = [b,Kn/K]. Since ψ(a) 6≡ Na (mod p), and σa

acts as ψ(a) on E[p] (Corollary 5.16(ii)), we see that σa−Na acts bijectively
on E[p]. But E[p] ∼= ΛχE /MχE where MχE denotes the maximal ideal of
the local ring ΛχE

. Therefore σa −Na is invertible in ΛχE
, so

{(η(b)
n )χE}n ∈ ΛχE

{(η(a)
n )χE}n

as claimed. Since U∞ is torsion-free (Proposition 11.4), CχE∞ must free of rank
1. ut

11.3 Application of the Euler System of Elliptic Units

Theorem 11.7. char(A∞) divides char(E∞/C∞).

The rest of this section will be devoted to a proof of this theorem. The
techniques are similar to those of the proof of Theorem 9.5, but messier
and more technically complicated because one needs to study modules over
Zp[Gal(Kn/K)] rather than Zp[∆]. See [Ru2] for the details which are not
included below, and see [Ru1] for the analogous result for cyclotomic fields.

We also record, but will not prove, the following corollary. With a better
definition of elliptic units, it would hold for more representations χ of ∆. See
[Ru2] Theorem 4.1 for a precise statement and [Ru2] §10 (see also [dS] §III.2)
for the proof, which is an application of the analytic class number formula.

Corollary 11.8. char(AχE∞ ) = char(EχE∞ /CχE∞ ).

Definition 11.9. Since A∞ is a torsion Λ-module, we can fix once and for
all an injective Λ-module map with pseudo-null cokernel

r⊕

i=1

Λ/fiΛ ↪→ A∞

with fi ∈ Λ, fi+1 | fi for 1 ≤ i ≤ r. Let A0
∞ denote the image of this map, so

A0
∞ = ⊕r

i=1Λyi ⊂ A∞

where yi ∈ A∞ is the image of 1 ∈ Λ/fiΛ. Then A0
∞ is an “elementary”

submodule of A∞ and A∞/A0
∞ is pseudo-null.

Let Ω = K∞(µp∞). If σ ∈ GΩ we write [σ] ∈ A∞ for the restriction of
σ to L∞. Note that if Kp 6= Qp then the Weil pairing (see [Si] Proposition
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III.8.1) shows that Ω = K∞, and if Kp = Qp then Ω/K∞ is totally ramified
at the prime p/p. Thus in either case the map GΩ → A∞ is surjective.

If 0 ≤ k ≤ r, a Frobenius sequence σ of length k is a k-tuple (σ1, . . . , σk)
of elements of GΩ satisfying

[σi]− yi ∈MA0
∞

for 1 ≤ i ≤ k, where M is as defined in §11.1, the intersection of all maximal
ideals of Λ.

Suppose n ≥ 1 and M is a power of p. Recall the subset Rn,M of R
defined in §8.2. For 0 ≤ k ≤ r we call a k-tuple (π̃1, . . . , π̃k) of primes of Kn

a Kolyvagin sequence (for n and M) if

– the π̃i lie above distinct primes of K belonging to Rn,M , and
– there is a Frobenius sequence σ = (σ1, . . . , σk) such that for 1 ≤ i ≤ k,

Frobπ̃i
= σi on Ln

where Ln is the maximal unramified abelian p-extension of Kn.

If π is a Kolyvagin sequence of length k we will write πi for the prime of K
below π̃i and we define

r(π) =
k∏

i=1

πi ∈ Rn,M .

Let Π(k, n, M) be the set of all Kolyvagin sequences of length k for n and
M .

Fix an ideal a so that {(η(a)
n )χE}n generates CχE∞ , as in the proof of Propo-

sition 11.6. Using the Euler system of elliptic units η
(a)
n (r), for r ∈ Rn,M we

obtain the Kolyvagin derivative classes

κn,M (r) ∈ K×
n /(K×

n )M

as in Definition 8.7. For every n recall that Λn = Zp[Gal(Kn/K)] and let
Λn,M = (Z/MZ)[Gal(Kn/K)] = Λn/MΛn. If 0 ≤ k ≤ r define Ψ(k, n, M) to
be the ideal of Λn,M generated by

{ψ(κn,M (r(π))) : π ∈ Π(k, n, M), ψ ∈ HomΛn(Λn,Mκn,M (r(π)), Λn,M )}

When k = 0, Π(k, n, M) has a single element (the empty sequence) and

Ψ(0, n,M) ⊃ {ψ(η(a)
n ) (mod M) : ψ ∈ HomΛn(En, Λn)} (14)

It follows from Lemma 11.1 that A∞/JnA∞ is finite for every n. From
this it is not difficult to show that Λn/char(A∞)Λn is also finite for every n.
For every n define Nn to be the product of #(An) and the smallest power of
p which annihilates Λn/char(A∞)Λn.
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The following proposition is the key to the proof of Theorem 11.7.

Proposition 11.10. There is an ideal B of height at least two in Λ such that
for every n ≥ 1, power M of p, and 0 ≤ k < r,

BΨ(k, n, MNn)Λn,M ⊂ fk+1Ψ(k + 1, n,M).

We will first show how to complete the proof of Theorem 11.7 assuming
Proposition 11.10, and then we will prove Proposition 11.10.

Lemma 11.11. Suppose G is a finite abelian group and B is finitely gen-
erated Zp[G]-module with no p-torsion. If f ∈ Zp[G] is not a zero-divisor,
b ∈ B, and

{ψ(b) : ψ ∈ HomZp[G](B,Zp[G])} ⊂ fZp[G],

then b ∈ fB.

Proof. Let B′ = Zp[G]b + fB. Since f is not a zero-divisor, we have a com-
mutative diagram

HomZp[G](B′, fZp[G])
f←− HomZp[G](B′,Zp[G]) ∼−→ HomZp(B′,Zp)y

y
y

HomZp[G](fB, fZp[G])
f←− HomZp[G](fB,Zp[G]) ∼−→ HomZp(fB,Zp)

in which the horizontal maps are all isomorphisms.
Choose ϕ̄ ∈ HomZp[G](fB, fZp[G]). Since B has no p-torsion and f is

not a zero-divisor, ϕ̄ extends uniquely to a map ϕ : B → Zp[G], and by our
assumption, ϕ ∈ HomZp[G](B′, fZp[G]). Thus all the vertical maps in the
diagram above are isomorphisms. Since B′ and fB are free Zp-modules, the
surjectivity of the right-hand vertical map shows that B′ = fB, which proves
the lemma. ut
Proof (of Theorem 11.7, assuming Proposition 11.10). Fix n ≥ 1 and ψ ∈
HomΛn(Ēn, Λn), and let B ⊂ Λ be an ideal of height at least two satisfying
Proposition 11.10. We will show that, for every choice of a,

Brψ(η(a)
n ) ⊂ char(A∞)Λn. (15)

Assuming this, Lemma 11.11 applied with B = Ēn/(Ēn)tors shows that

Brη(a)
n ⊂ char(A∞)Ēn + (Ēn)tors.

Since E∞ has no Λ-torsion (Lemma 11.5), it follows that

Br{η(a)
n }n ⊂ char(A∞)E∞.

Thus BrC∞ ⊂ char(A∞)E∞, and since Br is an ideal of height at least two
the theorem follows.
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It remains to prove (15). Suppose 0 ≤ k < r and M is a power of p.
Proposition 11.10 shows that

BΨ(k, n, MNr−k
n )Λn,M ⊂ fk+1Ψ(k + 1, n, MNr−k−1

n )Λn,M ,

so by induction we conclude that

BrΨ(0, n, MNr
n)Λn,M ⊂

(
r∏

i=1

fi

)
Ψ(r, n, M) ⊂ char(A∞)Λn,M . (16)

Using (14) it follows that

Brψ(η(a)
n )Λn,M ⊂ char(A∞)Λn,M ,

and since this holds for every M , it proves (15). This completes the proof of
Theorem 11.7. ut

The rest of this section is devoted to proving Proposition 11.10. If σ =
(σ1, . . . , σk) is a Frobenius sequence define

Aσ =
k∑

i=1

Λ[σi] ⊂ A0
∞.

Lemma 11.12. If σ is a Frobenius sequence of length k then Aσ is a direct
summand of A0

∞ and Aσ = ⊕k
i=1Λ/fiΛ.

Proof. Recall that A0
∞ = ⊕r

i=1Λyi. Define Yk =
∑r

i=k+1 Λyi. The image
of Aσ + Yk in A0

∞/MA0
∞ contains all the yi, so by Nakayama’s Lemma,

Aσ+Yk = A0
∞. We will show that Aσ ∩Yk = 0, and thus A0

∞ = Aσ⊕Yk and

Aσ ∼= A0
∞/Yk

∼= ⊕k
i=1Λ/fiΛ.

For 1 ≤ i ≤ k write
[σi] = yi + vi + wi

where vi ∈M(⊕i≤kΛyi) and wi ∈MYk. Suppose

k∑

i=1

ai[σi] ∈ Yk

with ai ∈ Λ. Then we must have
∑k

i=1 ai(yi + vi) = 0. We can write this in
matrix form, using the basis y1, . . . , yk of ⊕i≤kΛyi, as

(a1, . . . , ak)B ∈ (f1Λ, . . . , fkΛ)

where B is a k×k matrix with entries in Λ, congruent to the identity matrix
modulo M. Therefore B is invertible, and, since fk | fi for every i ≤ k, we
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conclude that each ai is divisible by fk. But fk annihilates Yk, so we deduce
that

k∑

i=1

ai[σi] =
k∑

i=1

aiwi = 0.

This completes the proof of the lemma. ut

Recall Ω = K∞(µp∞).

Proposition 11.13. Suppose W is a finite subgroup of K×
n /(K×

n )M for some
n and M . Then GK acts trivially on the cokernel of the natural Kummer map

GΩ → Hom(W,µM ).

Proof. Let W̄ denote the image of W in Ω×/(Ω×)M . The map in question
factors

GΩ → Hom(W̄ , µM ) → Hom(W,µM ).

where the first (Kummer) map is surjective and the cokernel of the second is
Hom(V, µM ) with

V = ker(W → W̄ ) ⊂ ker(H1(Kn, µM ) → H1(Ω, µM )) = H1(Ω/Kn,µM ).

Since Ω is abelian over K, GK acts on V via the cyclotomic character, and
hence GK acts trivially on Hom(V, µM ). The proposition follows. ut

Let A denote the annihilator in Λ of A∞/A0
∞, so A is an ideal of height

at least two.

Lemma 11.14. Suppose n ≥ 0, M is a power of p, k < r, and π =
{π̃1, . . . , π̃k+1} ∈ Π(k + 1, n, MNn). Let Q = π̃k+1, q = πk+1 and r =
q−1r(π). If ρ ∈ A then there is a Galois-equivariant homomorphism

ψ : Λn,Mκn,M (rq) → Λn,M

such that
ρφq(κn,M ′(r)) ≡ fk+1ψ(κn,M (rq))Q (mod M)

where φq : Λn,MNnκn,MNn(r) → Λn,MNnQ is the map of Definition 8.9.

Proof. Write M ′ = MNn, and let σ be a Frobenius sequence corresponding
to π. Let Ān denote the quotient of An by the Λn-submodule generated by
the classes of π̃1, . . . , π̃k, and let [Q] denote the class of Q in Ān. Since the
Frobenius of Q on the Hilbert class field of Kn is σ, [Q] is the projection of
[σ] to Ān. By Lemma 11.12 the annihilator of [σ] in A0

∞/Aσ is fk+1Λ and
Aσ is a direct summand of A0

∞, so the annihilator of [σ] in (A0
∞/Aσ) ⊗ Λn

is fk+1Λn. By Lemma 11.1, Ān = A∞/(Aσ + JnA∞) so the kernel of the
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natural map (A0
∞/Aσ)⊗Λn → Ān is annihilated by A. Therefore if A′ ⊂ Λn

is the annihilator of [Q] in Ān, then

AA′ ⊂ fk+1Λn.

Since #(An) divides Nn, Proposition 8.10(i) shows that [κn,M ′(rq)]q is 0
in Ān. Therefore [κn,M ′(rq)]q ∈ A′Λn,M ′Q, so if ρ ∈ A then

ρ[κn,M ′(rq)]q ∈ fk+1Λn,M ′Q.

Since fk+1 divides f1 and f1 divides Nn in Λn, the map

f−1
k+1 : Λn,M ′ → Λn,M

is well-defined, and we will define ψ : Λn,Mκn,M (rq) → Λn,MQ by

ψ(κn,M (rq))Q = f−1
k+1ρ[κn,M ′(rq)]q.

If we can show that ψ is well-defined, then by Proposition 8.10(ii) we will
have

ρφq(κn,M ′(r)) = ρ[κn,M ′(rq)]q ≡ fk+1ψ(κn,M (rq))Q (mod M)

as desired.
We need to show that ψ is well-defined, i.e., if η ∈ Λn and κn,M (rq)η ∈

(K×
n )M then ηρ[κn,M ′(rq)]q ∈ fk+1MΛn,M ′Q. But this is essentially the

same argument as above. If η annihilates κn,M (rq) then κn,M ′(rq)η = αM

for some α ∈ K×
n . Again using Proposition 8.10(i), [α]q is 0 in Ān, so

ρ[α]q ∈ fk+1Λn,NnQ and the desired inclusion follows. ut

Proof (of Proposition 11.10). Let ΛΩ = Zp[[Gal(Ω/K)]] and denote by ε
both the cyclotomic character Gal(Ω/K) → Z×p and the induced map ΛΩ →
Zp. Define

twε : ΛΩ → ΛΩ

to be the homomorphism induced by γ 7→ ε(γ)γ−1 for γ ∈ Gal(Ω/K).
Recall that A is the annihilator of A∞/A0

∞, and define

B =

{
A if Kp = Qp

A twε(MAJ0) if Kp 6= Qp

(recall that Ω = K∞ if Kp 6= Qp). Then B is an ideal of height at least two,
and we will show that Proposition 11.10 holds with this choice of B.

Fix n and M , and write M ′ = MNn. Fix a Kolyvagin sequence π ∈
Π(k, n,M ′), let r = r(π), and suppose ψ : Λn,M ′κn,M ′(r) → Λn,M ′ . We need
to show that

Bψ(κn,M ′(r))Λn,M ⊂ fk+1Ψ(k + 1, n, M).
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We will do this by constructing suitable Kolyvagin sequences of length k + 1
extending π.

There is a Zp-module isomorphism

ι : HomΛn
(Λn,M ′κn,M ′(r), Λn,M ′)⊗ µM ′

∼−→ HomZp
(Λn,M ′κn,M ′(r), µM ′)

induced by

(
∑

γ

aγγ)⊗ ζ 7→ ζa1 .

One can check that if φ ∈ HomΛn
(Λn,M ′κn,M ′(r), Λn,M ′), ζ ∈ µM ′ , and

ρ ∈ ΛΩ then
ρι(φ⊗ ζ) = ι((twε(ρ)φ)⊗ ζ).

Suppose τ ∈ GK , fix a primitive M ′-th root of unity ζM ′ , and let KumM ′

denote the Kummer map GΩ → Hom(K×
n , µM ′). By Proposition 11.13 there

is a γ0 ∈ GΩ such that

KumM ′(γ0) = (τ − 1)ι(ψ ⊗ ζM ′) on Λn,M ′κn,M ′(r).

Choose ρ ∈ ΛΩ such that the projection of ρ to Λ lies in MA and let γ ∈ GΩ

be such that γ = γρ
0 on Ωab (we view Gal(Ω/K) as acting on Gal(Ωab/Ω)

in the usual way).
Let σ be a Frobenius sequence corresponding to π. We define two Frobe-

nius sequences σ′ and σ′′ of length k + 1 extending σ as follows. Let σ′k+1

be an element of GΩ such that [σ′k+1] = yk+1, and let σ′′k+1 = σ′k+1γ with γ
as above.

Since [γ] = ρ[γ0] ∈MA0
∞, both σ′ and σ′′ are Frobenius sequences.

Let q′ and q′′ be primes of K whose Frobenius elements (for some choice
of primes “upstairs”) in Hn(µM ′ , (Λnκn,M ′(r))1/M ′

)/K are the restrictions
of σ′ and σ′′, respectively, where Hn is the Hilbert class field of Kn. Let Q′

and Q′′ be primes of Kn above q′ and q′′ with these Frobenius elements. It
follows from Definition 8.9 that there are integers a′ and a′′ such that

ι(φ̄q′ ⊗ ζa′
M ′) = KumM ′(σ′), ι(φ̄q′′ ⊗ ζa′′

M ′) = KumM ′(σ′′)

where φq′ : Λn,M ′κn,M ′(r) → Λn,M ′Q′ is the map of Definition 8.9, φ̄q′ ∈
Hom(Λn,M ′κn,M ′(r), Λn,M ′) is defined by φq′ = φ̄q′Q

′, and similarly for q′′.
Now

ι(twε(ρ(τ − 1))ψ)⊗ ζM ′ = ρKumM ′(γ0)
= KumM ′(σ′′)−KumM ′(σ′)
= ι(a′′φ̄q′′ ⊗ ζM ′ − a′φ̄q′ ⊗ ζM ′)

and so finally

twε(ρ(τ − 1))ψ = a′′φ̄q′′ − a′φ̄q′ . (17)
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If Kp 6= Qp, then the twε(ρ)(ε(τ)τ − 1), with our choices of τ and ρ, gen-
erate twε(MAJ0). If Kp = Qp, then µp 6⊂ K∞ (since K∞/K is unramified
at p/p) and so we can choose τ and ρ so that twε(ρ(τ − 1)) projects to a unit
in Λ. Now Lemma 11.14 completes the proof of Proposition 11.10. ut

12 Computing the Selmer Group

In this section we compute the order of the p-power Selmer group for primes
p > 7 of dood reduction, and thereby prove assertion (ii) of the theorem of the
introduction. The computation divides naturally into two cases depending on
whether p splits in K or not.

Keep the notation of the previous section. In particular E is an elliptic
curve defined over an imaginary quadratic field K, with complex multipli-
cation by the full ring of integers of K, and p is a prime of K of residue
characteristic greater than 7 where E has good reduction.

Definition 12.1. Let π = ψ(p) and recall that the π-adic Tate module of E
is defined by

Tπ(E) = lim←−
n

E[pn],

inverse limit with respect to multiplication by π. For every n let δn : Un →
E[pn] be the map of Lemma 6.8. It is clear from the definition that we have
commutative diagrams

Un+1
δn+1−−−−→ E[pn+1]

NKn+1/Kn

y
yπ

Un
δn−−−−→ E[pn],

and we define
δ∞ = lim←−

n

δn : U∞ → Tπ(E).

Recall the Selmer group Sπn(E) of Definition 4.1 and the extended Selmer
group S ′πn(E) of Definition 6.3. Define

Sp∞ = lim−→
n

Sπn(E), S ′p∞ = lim−→
n

S ′πn(E).

Thus there is an exact sequence

0 → E(K)⊗Qp/Zp → Sp∞ →X(E)p∞ → 0. (18)

Proposition 12.2. (i) S ′p∞ = Hom(X∞, E[p∞])G∞ = Hom(XχE∞ , E[p∞])Γ .
(ii) Sp∞ is the kernel of the composition

S ′p∞ ∼−→ Hom(XχE∞ , E[p∞])Γ → Hom(ker(δ∞), E[p∞])

induced by (i) and local class field theory.
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Proof. The first assertion is just a restatement of Proposition 6.5, and the
second follows from Theorem 6.9. ut

Theorem 12.3 (Wiles’ explicit reciprocity law [Wil]). Suppose x is
an Op-generator of Tπ(E), z = (zn) is the corresponding generator of Tπ(Ê),
u = (un) ∈ U∞, and f(Z) ∈ Op[[Z]] is such that f(zn) = un for every n.
Then

δ∞(u) = (ψ(p)− 1)
f ′(0)
f(0)

x.

See [Wil] or [dS] Theorem I.4.2 for the proof.

Corollary 12.4. δ∞(C∞) =
L(ψ̄, 1)

Ω
Tπ(E)

Proof. Using Theorem 12.3, we see that δ∞(C∞) is the ideal of Op generated
by the values (Λ′p,a(0)/Λp,a(0)) where Λp,a is defined in Definition 7.21, and
we allow the ideal a to vary. The corollary now follows from Theorem 7.22(ii)
and Lemma 10.2. ut

Remark 12.5. In fact, for every u ∈ U∞ there is a power series fu ∈ Op[[X]]
such that fu(zn) = un for every n as in Theorem 12.3. See [Col] or [dS] §I.2.

Definition 12.6. Let ρE : G∞ → O×p be the character giving the action of
G∞ on E[p∞]. We can also view ρE as a homomorphism from Λ to Op, and
we define AE ⊂ Λ to be the kernel of this homomorphism.

If a, b ∈ Kp we will write a ∼ b to mean that a/b ∈ O×p .

12.1 Determination of the Selmer Group when Kp = Qp

For this subsection we suppose (in addition to our other assumptions) that
Kp = Qp.

If M is a Λ-module we will write

MAE=0 = {m ∈ M : AEm = 0}.

Proposition 12.7. Suppose that M is a finitely-generated torsion Λ module.

(i) Hom(M, E[p∞])G∞ is finite ⇔ ρE(char(M)) 6= 0 ⇔ MAE=0 is finite.
(ii) #(Hom(M,E[p∞])G∞) ∼ ρE(char(M))#(MAE=0).

Proof. Fix an exact sequence of Λ-modules

0 →
k⊕

i=1

Λ/fiΛ → M → Z → 0
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with pseudo-null (in this case, finite) cokernel Z. Fix a topological generator
γ of G∞ = ∆× Γ . Then AE = (γ − ρE(γ))Λ, so multiplication by γ − ρE(γ)
leads to a snake lemma exact sequence of kernels and cokernels

0 →
k⊕

i=1

(Λ/fiΛ)AE=0 → MAE=0 → ZAE=0

→
k⊕

i=1

Λ/(fiΛ +AE) → M/AEM → Z/AE → 0.

Also
Hom(M, E[p∞])G∞ = Hom(M/AEM, E[p∞]).

The map ρE induces an isomorphism Λ/(fiΛ + AE) ∼−→ Zp/ρE(fi)Zp,
and

(Λ/fiΛ)AE=0 = {g ∈ Λ, gAE ⊂ fiΛ}/fiΛ

so since AE is a prime ideal,

(Λ/fiΛ)AE=0 6= 0 ⇔ fi ∈ AE ⇔ (Λ/fiΛ)AE=0 is infinite.

Since Z is finite, the exact sequence

0 → ZAE=0 → Z
γ−ρE(γ)−→ Z → Z/AEZ → 0

shows that #(ZAE=0) = #(Z/AEZ). Since char(M) =
∏

i fiΛ, the lemma
follows. ut

Theorem 12.8. #(S ′p∞) = [Zp : ρE(char(X∞))].

Proof. This is immediate from Propositions 12.2(i), 11.3, and 12.7 (note that
if ρE(char(X∞)) 6= 0 then XAE=0

∞ is finite by Proposition 12.7 and hence
zero by Proposition 11.3). ut

Theorem 12.9. char(XχE∞ ) = char(UχE∞ /CχE∞ ).

Proof. Immediate from Corollary 11.8 and (13). ut

Theorem 12.10 (Coates and Wiles). Let D denote the ring of integers
of the completion of the maximal unramified extension of Qp. Then there is
a p-adic period Ωp ∈ D× such that char(U∞/C∞)D[[G∞]] has a generator LE

satisfying

ρk
E(LE) = Ωk

p (1− ψ(pk)/p)
L(ψ̄k, k)

Ωk

for every k ≥ 1.

Proof. See [CW2] or [dS] Corollary III.1.5. ut
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Corollary 12.11. #(S ′p∞) ∼ (1− ψ(p)/p)
L(ψ̄, 1)

Ω
.

Proof. Immediate from Theorem 12.8, Theorem 12.9, and Theorem 12.10.
ut

Proposition 12.12. [S ′p∞ : Sp∞ ] ∼ (1− ψ(p)/p).

For a proof see [PR] Proposition II.8 or [Co] Proposition 2 and Lemma 3.

Corollary 12.13. Suppose p - f, p > 7, and Kp = Qp.

(i) If L(ψ̄, 1) = 0 then Sp∞ is infinite.
(ii) If L(ψ̄, 1) 6= 0 then

#(X(E)p∞) ∼ L(ψ̄, 1)
Ω

.

Proof. This is immediate from Corollary 12.11 and Proposition 12.12. (For
(ii), we also use (18).) ut

12.2 Determination of the Selmer Group when [Kp : Qp] = 2

For this subsection we suppose that [Kp : Qp] = 2, so Γ ∼= Z2
p and E[p∞] ∼=

Kp/Op has Zp-corank 2.

Lemma 12.14. There is a decomposition

UχE∞ = V1 ⊕ V2

where V1 and V2 are free of rank one over ΛχE
, δ∞(V2) = 0, and EχE∞ 6⊂ V2.

Proof. By Proposition 11.4, UχE∞ is free of rank two over ΛχE
. Fix a split-

ting UχE∞ = ΛχE v1 ⊕ ΛχE v2. By Corollary 5.20(ii), ρE is surjective, and it
follows that δ∞(ΛχE v1) and δ∞(ΛχE v2) are Op-submodules of Tπ(E). Since
δ∞ is surjective (Lemma 6.8) and δ∞(U∞) = δ∞(UχE∞ ), it follows that either
δ∞(ΛχE

v1) = Tπ(E) or δ∞(ΛχE
v2) = Tπ(E).

Thus, by renumbering if necessary, we may assume that δ∞(ΛχE
v1) =

Tπ(E). In particular we can choose g ∈ ΛχE
so that δ∞(v2) = δ∞(gv1), and

(by adjusting g if necessary by an element of the kernel of ρE) we may assume
that E∞ 6⊂ ΛχE (v2 − gv1). Now the lemma is satisfied with

V1 = ΛχE
v1, V2 = ΛχE

(v2 − gv1).

ut
Definition 12.15. Fix a decomposition of UχE∞ as in Lemma 12.14 and de-
fine

Ũ = UχE∞ /V2, X̃ = XχE∞ /image(V2)

where image(V2) denotes the image of V2 in X∞ under the Artin map of local
class field theory.
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Lemma 12.16. (i) X̃ is a torsion ΛχE
-module with no nonzero pseudo-null

submodules.
(ii) char(X̃) = char(Ũ/image(CχE∞ ))

Proof. Since E∞ 6⊂ V2 and V2 is free, (i) follows from Proposition 11.3. Also,
the exact sequence (13) induces an exact sequence

0 → EχE∞ /CχE∞ → Ũ/image(CχE∞ ) → X̃ → AχE∞ → 0.

so (ii) follows from Corollary 11.8. ut
Proposition 12.17. Sp∞ = Hom(X̃, E[p∞])Γ

Proof. By our choice of V1 and V2 (Proposition 12.14), we see that ker(δ∞) =
AEV1 + V2. Thus

X̃/AEX̃ = X∞/(AEX∞ + image(V2)) = X∞/(AEX∞ + image(ker(δ∞)))

and so by Proposition 12.2(ii)

Sp∞ = Hom(X∞/(AEX∞ + image(ker(δ∞))), E[p∞]) = Hom(X̃, E[p∞])Γ .

ut
Proposition 12.18. Suppose M is a finitely-generated torsion ΛχE

-module
and F is a Zp-extension of K1 in K∞ satisfying

(i) M has no nonzero pseudo-null submodules,
(ii) If γ generates Gal(K∞/F ) then char(M) 6⊂ (γ − 1)ΛχE

, char(M) 6⊂
(γ − ρE(γ))ΛχE , and M/(γ − 1)M has no nonzero finite submodules.

Then
#(Hom(M, E[p∞])Γ ) = [Op : ρE(char(M))].

Proof (sketch). For a complete proof see [Ru2], Lemmas 6.2 and 11.15.
Let T̂π = Hom(Tπ,Op), let ΛF = Zp[[Gal(F/K)]], and let M̄ denote the

ΛχE

F -module (M ⊗ T̂π)/(γ − 1)(M ⊗ T̂π). Using the hypotheses on M and F
it is not difficult to show (see [Ru2] Lemma 11.15) that M̄ has no nonzero
finite submodules. Therefore exactly as in Proposition 12.7,

#(Hom(M, E[p∞])Γ ) = #(Hom(M ⊗ T̂π,Op)Γ )

= #(Hom(M̄,Op)Gal(F/K))
= [Op : 1l(charF (M̄))]

where 1l denotes the trivial character and charF (M̄) is the characteristic ideal
of M̄ as a ΛχE

F -module.
By an argument similar to the proof of Proposition 12.7, one can show

that charF (M̄) = char(M ⊗ T̂π)ΛχE

F . Therefore

#(Hom(M, E[p∞])Γ ) = [Op : 1l(char(M ⊗ T̂π))] = [Op : ρE(char(M))].

ut
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Theorem 12.19. Suppose p - f, p > 7, and Kp 6= Qp.

(i) If L(ψ̄, 1) = 0 then Sp∞ is infinite.
(ii) If L(ψ̄, 1) 6= 0 then

#(X(E)p∞) = [Op : (L(ψ̄, 1)/Ω)Op].

Proof. Lemma 12.16(i) shows that X̃ satisfies the first hypothesis of Propo-
sition 12.18, and the same argument with K∞ replaced by F verifies the
second hypothesis for all but finitely many choices of F . Also, Ũ/image(CχE∞ )
satisfies the hypotheses of Proposition 12.18 since it is a quotient of one free
ΛχE

-module by another (Proposition 11.6). Therefore by Proposition 12.18
and Lemma 12.16(ii),

#(Hom(X̃, E[p∞])Γ ) = #(Hom(Ũ/image(CχE∞ ), E[p∞])Γ ).

The left-hand side of this equality is #(Sp∞) by Proposition 12.17. On the
other hand,

Hom(Ũ/image(CχE∞ ), E[p∞])Γ = Hom(Ũ/(image(CχE∞ +AEŨ)), E[p∞]),

and δ∞ : Ũ/AEŨ → Tπ(E) is an isomorphism (Lemmas 6.8 and 12.14).
Therefore

#(Hom(Ũ/image(CχE∞ ), E[p∞])Γ ) = #(Tπ/δ∞(C∞))

and the Theorem follows from Wiles’ explicit reciprocity law (Corollary 12.4)
and (18). ut

12.3 Example

We conclude with one example. Let E be the elliptic curve y2 = x3 − x. The
map (x, y) 7→ (−x, iy) is an automorphism of order 4 defined over K = Q(i),
so EndK(E) = Z[i]. Let p2 denote the prime (1 + i) above 2.

Clearly E(Q)tors ⊃ E[2] = {O, (0, 0), (1, 0), (−1, 0)}. With a bit more
effort one checks that E(K) contains the point (−i, 1 + i) of order p3

2, and
using the Theorem of Nagell and Lutz ([Si] Corollary VIII.7.2) or Corollary
5.18 one can show that in fact E(K)tors = E[p3

2].
The discriminant of E is 64, so E has good reduction at all primes of K

different from p2. Since E[p3
2] ⊂ E(K), if we write ψE for the Hecke character

of K attached to E, Corollary 5.16 shows that ψE(a) ≡ 1 (mod p3
2) for every

ideal a prime to p2. But every such ideal has a unique generator congruent
to 1 modulo p3

2, so this characterizes ψE and shows that its conductor is p3
2.

Standard computational techniques now show that

L(ψ̄, 1) = .6555143885...

Ω = 2.622057554...
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Therefore by the Coates-Wiles theorem (Theorem 10.1), E(K) = E[p3
2] and

E(Q) = E[2]. Further, L(ψ̄, 1)/Ω is approximately 1/4. By Proposition 10.6
L(ψ̄, 1)/Ω is integral at all primes p of residue characteristic greater than 7. In
fact the same techniques show that L(ψ̄, 1)/Ω is integral at all primes p 6= p2,
and give a bound on the denominator at p2 from which we can conclude that
L(ψ̄, 1)/Ω = 1/4.

Therefore by Corollary 12.13 and Theorem 12.19, Sp∞ = X(E/K)p∞ = 0
for all primes p of residue characteristic greater than 7, and again the same
proof works for all p 6= p2. It follows easily from this that X(E/Q)p = 0
for all odd rational primes. Fermat did the 2-descent necessary to show that
X(E/Q)2 = 0 (see [We] Chap. II), so in fact X(E/Q) = 0. Together with
the fact that the Tamagawa factor at 2 is equal to 4, this shows that the full
Birch and Swinnerton-Dyer conjecture holds for E over Q.
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