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1 Introduction

1.1 Transcendence and algebraic independence

Let K be a field and L an extension of K (not necessarily finite). An element α ∈ L
is said to be algebraic over K if it is the zero of a non-trivial polynomial in K[x]. The
monic polynomial P (x) ∈ K[x] of minimal degree which has α as zero is called the
minimal polynomial of α. The degree of α is defined to be the degree of K[x].
An element α ∈ L is called transcendental over K if it is not algebraic over K.
A set of elements α1, . . . , αr ∈ L is called algebraically independent over K if P (α1, . . . , αr) 6=
0 for any non-trivial polynomial P (x1 . . . , xr) ∈ K[x1, . . . , xr].
Notice in particular that a transcendental element of L is called algebraically indepen-
dent over K.
We say that the field L has transcendence degree r over K if the largest subset of L
algebraically independent over K has size r. Notation degtrK(L) = r. When L contains
no elements transcendental over K we set degtrK(L) = 0. When L contains arbitrarily
large sets of algebraically independent elements we set degtrK(L) = ∞.
The most interesting problems, mostly the ones we are interested in at least, concern the
case when K = Q. It should be no surprise that proving transcendence of a real number
(such as π and e) over Q is much harder than proving irrationality for example. It is
therefore no surprise that in the beginning of the 19th century no examples of transcen-
dental numbers were known. In 1844 Liouville gave the first examples of transcendental
numbers.

Theorem 1.1.1 (Liouville 1844) The number

α =
∞∑

k=0

1
2k!

is transcendental.

Proof Suppose α is algebraic. Let P (x) ∈ Z[x] be the minimal polynomial of α and
assume its degree is D. It is a consequence of the mean value theorem there exists
M > 0 such that for any x ∈ [α− 1, α + 1] we have

|P (x)| = |P (x)− P (α)| ≤ M |x− α|.

We can take M = maxξ∈[−1,1] |P ′(α + ξ)|. Let now αn be the value of the truncated
series

αn =
n∑

k=0

1
2k!

.

Notice that

|α− αn| = 2−(n+1)! + 2−(n+2)! + · · ·
≤ 2−(n+1)!(1 + 1/2 + 1/4 + · · ·) = 2 · 2−(n+1)!

F.Beukers, E-functions and G-functions



4 1 INTRODUCTION

We derive two estimates, this time for |P (αn)|. Note that αn is a rational number with
denominator 2n!. Since P has at most finitely many zeros we have that P (αn) 6= 0 for
sufficiently large n. Since P (αn) is rational with denominator dividing 2Dn! we conclude
that |P (αn)| ≥ 2−Dn! for sufficiently large n. On the other hand, by application of the
mean value theorem and our series estimate,

|P (αn)| ≤ M |αn − α| ≤ 2M2−(n+1)!.

Putting the inequalities together we get that

2−Dn! ≤ 2M2−(n+1)!

for sufficiently large n. Hence 2(n+1−D)n! ≤ 2M for sufficiently large n which gives a
contradiction. 2

Of course this idea of proof can be applied to any number of the form
∞∑

n=0

q−an

where q ∈ Z≥2 and an is an increasing sequence of positive integers such that limn→∞ an+1/an =
∞. This enabled Liouville to construct infinitely many examples of transcendental num-
bers.
Through the pioneering work of Cantor on set theory around 1874 it also became clear
that ‘almost all’ real numbers are transcendental. This follows from the following two
theorems.

Theorem 1.1.2 The set of algebraic numbers is countable.

Proof It suffices to show that the set Z[X] is countable. To any polynomial P (X) =
pnXn + pn−1X

n−1 + · · ·+ p1X + p0 ∈ Z[X] with pn 6= 0 we assign the number µ(P ) =
n + |pn| + |pn−1| + · · · + |p0| ∈ N. Clearly for any N ∈ N the number of solutions to
µ(P ) = N is finite, because both the degree and the size of the coefficients are bounded
by N . Hence Z[X] is countable. 2

Theorem 1.1.3 (Cantor) The set of real numbers is uncountable.

Proof We will show that the set of real numbers in the interval [0, 1) is uncountable.
Suppose that this set is countable. Choose an enumeration and denote the decimal ex-
pansion of the n-th real number by 0.an1an2an3 · · ·, where anm ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
for all n, m. Now consider the real number β whose decimal expansion reads 0.b1b2b3 · · ·
where the bi are chosen such that bi 6= aii for every i. This choice implies that β does
not occur in our enumeration. Hence [0, 1) is uncountable. 2

The principle of the proof of Theorem 1.1.3 is known as Cantor’s diagonal procedure
and it occurs in many places in mathematics.
Almost all real numbers being transcendental, it seems ironic that until the end of the
19-th century not a single ‘naturally occurring’ number was known to be transcendental.
Only in 1873 Hermite showed that e is transcendental and in 1882 Lindemann proved
π to be transcendental. Both these results are contained in the following Theorem.

F.Beukers, E-functions and G-functions



1.2 Developments not in this course 5

Theorem 1.1.4 (Lindemann-Weierstrass, 1885) Let α1, . . . , αn be distinct algebraic
numbers contained in C. Then the numbers eα1 , . . . , eαn are linearly independent over
Q.

In the 1920’s C.L.Siegel extended this work widely to a much larger class of so-called
E-functions which extend the exponential function. This development in transcendental
number theory will form the focus of our attention in these lectures.

1.2 Developments not in this course

Of course we should point out that other developments took place as well in the same
period. In his famous lecture of 1900 D.Hilbert asked whether numbers of the form ab

with a, b algebraic, a 6= 0, 1 and b 6∈ Q, are transcendental. Specific examples are 2
√

2

and i−2i = eπ. This problem, known as Hilbert’s 7th problem, was considered to be very
difficult by Hilbert, but already in the 1930’s A.O.Gel’fond and Th.Schneider indepently
developed techniques to solve this problem. So now we know,

Theorem 1.2.1 (Gel’fond, Schneider ,1934) Let a, b be algebraic and suppose that
a 6= 0, 1 and b 6∈ Q. Then ab is transcendental.

Corollary 1.2.2 Let α, β be two positive real algebraic numbers such that β 6= 1 and
log α/ log β 6∈ Q. Then log α/ log β is transcendental.

Proof Let b = log α/ log β and suppose b is algebraic. Then, according to Theorem
1.2.1 the number α = βb is transcental which is impossible since α is algebraic. 2

In 1966 A.Baker proved the following far-reaching generalisation of the Gel’fond-Schneider
theorem.

Theorem 1.2.3 Let α1, . . . , αn be non-zero algebraic numbers. If log α1, . . . , log αn are
Q-linear independent, then the numbers 1, log α1, . . . , log αn are Q-linear independent.

Baker also gave quantitative lower bounds for linear forms in logarithms of algebraic
numbers which had profound consequences for the theory of diophantine equations.
This work won him the Fields medal in 1974.
In the 15 years following Baker’s work it turned out that the results could be vastly
extended to linear forms in elliptic and abelian logarithms. Nowadays the Gel’fond-
Schneider theory has grown into a field of its own in which large classes of numbers,
ususally related to algebraic geometry, are known to be transcendental.
Despite all these developments the following conjecture is still unsolved.

Conjecture 1.2.4 (Schanuel) Suppose that b1, . . . , bm are Q-linearly independent. Then

degtrQQ(b1, . . . , bm, eb1 , . . . , ebm) ≥ m.

In the exercises we shall see that this conjecture entails the Lindemann-Weierstrass
theorem and Baker’s theorem and more. For example, e and π should be algebraically
independent by Schanuel’s conjceture (see the exercises) but it is not even known whether
e + π or eπ are irrational.

F.Beukers, E-functions and G-functions



6 1 INTRODUCTION

1.3 Values of Taylor series

A very natural question to ask is the following. Suppose we have a Taylor series expan-
sion f(z) =

∑
n≥0 fnzn where the coefficients fn are contained in an algebraic number

field which we assume embedded in C and f has positive radius of convergence ρ, say.

Question 1.3.1 Suppose a ∈ Q with 0 < |a| < ρ, is f(a) transcendental?

It turns out that in this generality the answer is ’no’. There exist Taylor series f(z) which
assume rational values at every algebraic point in its (positive) region of convergence, see
[]. In order to make any general statements at all we must make a number of restrictions
on f(z). In transcendence theory there are several such restrictions. The first one way
studied by C.L.Siegel in 1929 []. After the success of the Lindemann-Weierstrass theorem
Siegel wondered if the methods involved could be extended to functions like the Bessel
function J0, which is defined as

J0(2iz) =
∞∑

n=0

z2n

n!n!
.

Note that this series is reminiscent of the exponential function. Moreover, as is well
known, Bessel functions satisfy a second order linear differential equation. Siegel called
such functions E-functions and developed a transcendence theory for their values at
algebraic points. In Section 3 we discuss them in more detail. Siegel also introduced
a class of functions satisfying a linear differential equation and which is reminiscent of
the gemetric series. He named them G-function. Transcendence theory for values of G-
functions is much more rudimentary than that for E-functions. This is a bit unfortunate
since values of G-functions occur quite naturally in arithmetic and geometry. Think of
numbers like ζ(k) with k odd, or periods of differential forms on algebraic varieties
defined over Q. For a more extensive discussion see Section 4.

1.4 Exercises

Exercise 1.4.1 Show that degtrQ(Q) = 0.
Show, using elementary arguments a la Cantor, that degtrQ(C) = ∞

Exercise 1.4.2 Show that a finite set of complex numbers is algebraically independent
over Q if and only if they are independent over Q.

Exercise 1.4.3 For those who are familiar with the p-adic numbers Qp. Let Cp be the
completion of the algebraic closure of Qp Show that degtrQp

(Cp) = ∞.
The same question with Ωp, the completion of the maximal unramified extension of Qp,
instead of Cp seems to be even harder.

Exercise 1.4.4 Show that Schanuel’s conjecture implies the Lindemann-Weierstrass
theorem.

F.Beukers, E-functions and G-functions



1.4 Exercises 7

Exercise 1.4.5 Let a1, . . . , an be algebraic numbers that are multiplicatively indepen-
dent (i.e. no relation of the form ak1

1 · · · akn
n = 1 with ki ∈ Z not all zero). Show that

Schanuel’s conjecture implies that log a1, . . . , log an are algebraically independent.

By way of contrast we remark that it is still not known whether log 2 log 3 is transcen-
dental or not.

Exercise 1.4.6 Show that Schanuel’s conjecture implies the algebraic independence of
e and π.

Exercise 1.4.7 Let us take K = C(z), the rational functions, as ground field.

1. Show that ez is not in C(z).

2. Let a1, . . . , an be distinct complex numbers. Show that ea1z, . . . , eanz are linearly
independent over C(z).

3. Show that ez is transcendental over C(z).

4. Let a1, . . . , an be complex numbers that are linearly independent over Q. Then
ea1z, . . . , earz are algebraically independent over C(z).

F.Beukers, E-functions and G-functions



8 2 REMARKS ON LINEAR DIFFERENTIAL EQUATIONS

2 Remarks on linear differential equations

2.1 Introduction

We let K be either the field of rational functions in one variable or C((z)), the field of
Laurent series in z, or the field of meromorphic functions in z.
An ordinary linear differential equation is an equation of the form

∂ny + p1∂
n−1y + · · ·+ pn−1∂y + pny = 0, p1, . . . , pn ∈ K.

A system of n first order equations over K has the form

∂y = Ay

in the unknown column vector y = (y1, . . . , yn)t and where A is an n × n-matrix with
entries in K.
Note that if we replace y by Sy in the system, where S ∈ GL(n, K), we obtain a new
system for the new y,

∂y = (S−1AS + S−1∂S)y.

Two n × n-systems with coefficient matrices A,B are called equivalent over K if there
exists S ∈ GL(n, K) such that B = S−1AS + S−1∂S.
It is well known that a differential system can be rewritten as a system by putting
y1 = y, y2 = y′, . . . , yn = y(n−1). We then note that y′1 = y2, y

′
2 = y3, . . . , y

′
n−1 = yn and

finally, y′n = −p1yn − p2yn−1 − . . .− pny1. This can be rewritten as

d

dz


y1

y2
...

yn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−pn −pn−1 −pn−2 · · · −p1




y1

y2
...

yn


There is also a converse statement.

Theorem 2.1.1 (Cyclic vector Lemma) Any system of linear first order differential
equations over K is equivalent over K to a system which comes from a differential
equation.

2.2 Local theory

In this section our differential field will be C((z)). We shall denote the derivation d
dz by

∂ and the derivation z d
dz by θ.

Consider the linear differential equation of order n,

∂ny + p1(z)∂(n−1)y + · · ·+ pn−1(z)∂y + pn(z)y = 0, (1)

with pi ∈ C((z)). If z = 0 is not a pole of any pi it is called a regular point of (1), otherwise
it is called a singular point of (1). The point z = 0 is called a regular singularity if pi

has a pole of order at most i for i = 1, . . . , n.

F.Beukers, E-functions and G-functions



2.2 Local theory 9

Another way of characterising a regular singularity is by rewriting (1) with respect to
the derivation θ. Multiply (1) with zn and use zrDr = θ(θ − 1)(θ − r + 1) to obtain an
equation of the form

θny + q1(z)θn−1y + · · ·+ qn−1(z)θy + qn(z)y = 0. (2)

The condition for z = 0 to be a regular singularity comes down to qi ∈ C[[z]] for all i.

Theorem 2.2.1 (Cauchy) Suppose 0 is a regular point of (1). Then there exist n C-
linear independent Taylor series solutions f1, . . . , fn ∈ C[[z]]. Any Taylor series solution
of (1) is a C-linear combination of f1, . . . , fn. Moreover, if the coefficients of (1) have
positive radius of convergence, the same holds for f1, . . . , fn.

When the point is a regular singular point one can still make a statement, although
there is in general not a basis of Taylor series solutions any more. Instead we have to
look for local solutions of the form zρy(z) where y(z) is a Taylor series in z.
In the following theorem we shall consider expressions of the form zA where A is a
constant n× n matrix. This is short hand for

zA = exp(A log z) =
∑
k≥0

1
k!

Ak(log z)k.

In particular zA is an n × n matrix of multivalued functions around z = 0. Examples
are,

z

 
1/2 0

0 −1/2

!
=
(

z1/2 0
0 z−1/2

)
, z

 
0 1

0 0

!
=
(

1 log z
0 1

)
.

In the following Theore we also need the so-called indicial equation of a linear differential
equation with a regular singularity. It reads

Xn + q1(0)Xn−1 + q2(0)Xn−2 + · · ·+ qn−1(0)X + qn(0) = 0

where the qi(z) are the coefficients from (2).

Theorem 2.2.2 (Fuchs) Suppose that z = 0 is a regular singularity of the equation
(1). Then there exist Taylor series u1, . . . , un and an upper triangular matrix B with
constant entries in Jordan normal form, such that a basis of solutions of (1) is given by

(u1, u2, . . . , un)zB.

Any eigenvalue ρ of B is the minimum of all roots of the indicial equation of the form
ρ, ρ + 1, ρ + 2, . . ..
Moreover, if the coefficients of (1) have positive radius of convergence, the same holds
for the entries ui(z).

The roots of the indicial equation are called the local exponents at z = 0 of the system.

Exercise 2.2.3 Show that the local exponents at a regular point read 0, 1, . . . , n− 1.

F.Beukers, E-functions and G-functions



10 2 REMARKS ON LINEAR DIFFERENTIAL EQUATIONS

Exercise 2.2.4 Suppose that the local exponents at z = 0 are 0, 1, . . . , n− 1 and that to
each exponents there corresponds a holomorphic solution. Then z = 0 is a regular point
(i.e. non-singular).

Exercise 2.2.5 Consider the linear differential equation

(z3 + 11z2 − z)y′′ + (3z2 + 22z − 1)y′ + (z + 3)y = 0.

Show that the local exponents at z = 0 are 0, 0 and determine the recursion relation
for the holomorphic solution near z = 0. Determine also the first few terms of the
expansions of a basis of solutions near z = 0.

2.3 Fuchsian equations

In this section our differential field will be C(z), the field of rational functions in z and
we shall consider our differential equations and n× n-systems over this field.
Consider the linear differential equation

y(n) + p1(z)y(n−1) + · · ·+ pn−1(z)y′ + pn(z)y = 0, pi(z) ∈ C(z) (3)

To study this differential equation near any point P ∈ P1 we choose a local parameter
t ∈ C(z) at this point (usually t = z − P if P ∈ C and t = 1/z if P = ∞), and rewrite
the equation with respect to the new variable t. We call the point P a regular point or
a regular singularity if this is so for the equation in t at t = 0. It is not difficult to verify
that a point P ∈ C is regular if and only if the pi have no pole at P . It is a regular
singularity if and only if limz→P (z − P )ipi(z) exists for i = 1, . . . , n. The point ∞ is
regular or a regular singularity if and only if limz→∞ zipi(z) exists for i = 1, . . . , n.

Definition 2.3.1 A differential equation over C(z) or a system of first order equations
over C(z) is called Fuchsian if all points on P1 are regular or a regular singularity.

Let P ∈ P1 be any point which is regular or a regular singularity. Let t be a local
parameter around this point and rewrite the equation (3) with respect to the variable
t. The corresponding indicial equation will be called the indicial equation of (3) at P .
The roots of the indicial equation at P are called the local exponents of (3) at P .
This procedure can be cumbersome and as a shortcut we use the following lemma to
compute indicial equations.

Lemma 2.3.2 Let P ∈ C be a regular point or regular singularity of (3). Let ai =
limz→P (z − P )ipi(z) for i = 1, . . . , n. The indicial equation at P is given by

X(X − 1) · · · (X − n + 1) + a1X(X − 1) · · · (X − n + 2) + · · ·+ an−1X + an = 0.

When ∞ is regular or a regular singularity, let ai = limz→∞ zipi(z) for i = 1, . . . , n.
The indicial equation at ∞ is given by

X(X + 1) · · · (X + n− 1)− a1X(X + 1) · · · (X + n− 2) + · · ·
+(−1)n−1an−1X + (−1)nan = 0.

Proof. Exercise 2

F.Beukers, E-functions and G-functions
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3 E-functions

3.1 Definition

In generalising the Lindemann-Weierstrass theorem, C.L.Siegel in [17] introduced entire
analytic functions whose power series expansion is very reminiscent of the exponential
series and which, moreover, satisfy a linear differential equation.
In the definition below we assume that the algebraic numbers are embedded in C. For
any element α ∈ Q we define |α| to be maximum of the absolute values of all conjugates
of α. We call it the size of α. By den(α) we denote the denominator of α, the smallest
positive integer d such that dα is an algebraic integer. For any set of α1, . . . , αr we denote
by den(α1, . . . , αr) the lowest common multiple of the denominators of α1, . . . , αr.
An entire function f(z) given by a powerseries

∞∑
n=0

ak

k!
zk

with ai ∈ Q for all i, is called an E-function if

1. f(z) satisfies a linear differential equation with coefficients in Q(z).

2. Both |an| and the common denominator den(a0, . . . , an) are bounded by an expo-
nential bound of the form Cn, where C > 0 depends only on f .

Examples:

exp(z) =
∞∑

k=0

zk

k!

J0(−z2) =
∞∑

k=0

z2k

k!k!

f(z) =
∞∑

k=0

ak

k!
zk

where a0 = 1, a1 = 3, a2 = 19, a3 = 147, . . . are the Apéry numbers corresponding
to Apéry’s irrationality proof of ζ(2). They are determined by the recurrence relation
(n + 1)2an+1 = (11n2 − 11n + 3)an − n2an−1.
The corresponding differential equations read

y′ − y = 0
zy′′ + y′ − 4zy = 0

z2y′′′ − (11z2 − 3z)y′′ − (z2 + 22z − 1)y′ − (z + 3)y = 0

Although in the definition the coefficients an are in Q, there exists a number field K
such that an ∈ K for all n. The reason is that the differential equation satisfied by f
has a finite number of coefficients in Q(z). The field generated by the coefficients of
these rational functions is a finite extension of Q.

F.Beukers, E-functions and G-functions



12 3 E-FUNCTIONS

In the original definition Siegel used instead of the exponential bound CN in condition
2) the (seemingly) less restrictive cε(N !)ε for every ε > 0. However, it is conjectured that
the bound (N !)ε together with the fact that the function satisfies a linear differential
equation is enough to garantee that we have the exponential bound CN . Not a single
example is known to the contrary. Therefore we shall stick to our definition above.

3.2 Ring structure

Before going to their values we mention a few properties.

Proposition 3.2.1 The E-functions form a ring.

Proof. We need to show that both the sum and product of two E-functions f, g is again
an E-function. The fact that f satisfies a linear differential equation with coefficients in
Q(z) is equivalent to the fact that the Q(z)-linear vector space generated by f, f ′, f ′′, . . .
is finite dimensional. The same holds for g and its derivatives. As a consequence the
function f + g and its derivates span a finite dimensional vector space, hence f + g
satisfies a linear differential equation. Similarly it is easy to verify that fg and its
derivatives span a finite dimensional space.
So condition (1) for f + g and fg is verified. It remains to verify condition (2).
To make everything simple we restrict ourselves to the case when the coefficients of f, g
are in Q. Suppose

f =
∑
n≥0

fn

n!
zn, g =

∑
n≥0

gn

n!
zn

where fn, gn ∈ Q for all n. Clearly f +g and fg have their coefficients again in Q. Let us
choose C > 0 such that |fn| < Cn and |gn| < Cn,den(f0, . . . , fn) < Cn,den(g0, . . . , gn) <
Cn for all n.
The coefficients of f + g read (fn + gn)/n!. Clearly |fn + gn| < 2Cn and den(f0 +
g0, . . . , fn + gn) < C2n. Hence condition (2) is satisfied for f + g.
The n-th coefficient of fg (ignoring n!) reads

hn =
n∑

k=0

(
n

k

)
fkgn−k.

Notice that

|hn| ≤ 2n max
k,n−k

|fk| · |gn−k| < 2nCn

and

den(h0, . . . , hn) ≤ den(g0, g1, . . . , gn)den(f0, f1, . . . , fn) ≤ C2n.

Again condition (2) is satisfied.
2
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3.3 Transcendence results 13

3.3 Transcendence results

Siegel, around 1929, developed methods to prove transcendence and algebraic indepen-
dence of values of E-functions at algebraic arguments. An important technical condition
in Siegel’s work was the so-called normality condition, which presented significant ob-
stacles. Later this technical condition was circumvented by A.B.Shidlovsky in [20].
The theorems on values of E-functions are usually formulated in terms of the first order
systems that correspond to a linear differential equation. In this section the standard
notation for an n× n-system of first order equations will be

y′(z) = A(z)y(z) (A)

where A(z) is an n×n-matrix with coefficients in C(z) and whose common denominator
we denote by T (z).
We now have the following Theorem.

Theorem 3.3.1 (Siegel-Shidlovskii, 1929, 1956) . Let (f1(z), . . . , fn(z) be a solu-
tion vector of a system of first order equations of the form (A) and suppose that the
fi(z) are E-functions. Let T (z) be the common denominator of the entries of A(z). Let
α ∈ Q and αT (α) 6= 0. Then

degtrQ(f1(α), f2(α), . . . , fn(α)) = degtrC(z)(f1(z), f2(z), . . . , fn(z))

In particular, if the fi(z) are algebraically independent over C(z) then the values at
z = α are algebraically independent over Q (or Q, which amounts to the same). After
this theorem became available, much effort was spent into showing that large classes of
E-functions are algebraically independent over C(z). See the book by Shidlovskii [19]
and the paper [7], where differential galois theory was applied for the first time in these
questions.
Although the Siegel-Shidlovskii theorem is a very strong one, it does not answer a
question such as the following. Suppose that the fi(z) are linearly independent over
C(z), are the values at z = α linearly independent over Q?
Quite recently in [8] this question was answered affirmatively.

Theorem 3.3.2 (Beukers, 2004) Let notations be as in Theorem 3.3.1. Suppose that
the fi(z) are C(z)-linear independent. Then for any α ∈ Q which is not a zero of zT (z),
the numbers fi(α) are Q-linear independent.

Let us write f(z) = (f1(z), . . . , fn(z))t and A(z) = M(z)/T (z). Suppose that α is a zero
of T (z). Then clearly it follows from the system of equations that, since T (α)f ′(α) = 0,
we get 0 = M(α)f(α). Since M(α) 6= 0 this gives non-trivial Q-linear relations between
the numbers fi(α).
Notice that Theorem 3.3.2 is a natural generalisation of the Lindemann Weierstrass
Theorem. When β1, . . . , βn are distinct algebraic numbers, the functions eβ1z, . . . , eβnz

are C(z)-linear independent and they satisfy a system of first order linear differential
equations with constant coefficients. Hence their values at z = 1, that is eβ1 , . . . , eβn ,
are Q-linear independent.
In fact, Theorem 3.3.2 is a special case of a much more general Theorem.

F.Beukers, E-functions and G-functions



14 3 E-FUNCTIONS

Theorem 3.3.3 (Beukers, 2004) Let f1(z), . . . , fn(z) be E-functions which satisfy a
system of n first order equations. Then for any ξ ∈ Q which is not 0 or a singu-
larity of the system of differential equations, the following statement holds. To any
relation of the form P (f1(ξ), . . . , fn(ξ)) = 0 where P ∈ Q[X1, . . . , Xn] there exists a
Q ∈ Q[z,X1, . . . , Xn] such that Q(z, f1(z), . . . , fn(z)) ≡ 0 and

P (X1, . . . , Xn) = Q(ξ,X1, . . . , Xn)

Roughly speaking, any algebraic relation over Q between f1(ξ), . . . , fn(ξ) at some non-
zero, non-singular point ξ ∈ Q comes from specialisation at z = ξ of some functional
algebraic relation between f1(z), . . . , fn(z) over Q(z).
In [15] a weaker version of this Theorem was proven using the Siegel-Shidlovskii Theo-
rem. The weaker part consisted of the fact that there is an extra condition ξ 6∈ S, where
S is a certain finite set of points.

3.4 Y.André’s theorem

In many examples of E-functions the corresponding differential equation has singularities
only at z = 0 (and z = ∞ by default). One may wonder if this is always the case. In a
brilliant paper Y.André [3] confirmed this up to a certain level.

Theorem 3.4.1 (Y.André, 2000) Let f(z) be an E-function. Then f(z) satisfies a
differential equation of the form

zmy(m) +
m−1∑
k=0

zkqk(z)y(k) = 0

where qk(z) ∈ Q[z] has degree ≤ m− k.

So any E-function satisfies a linear differential equation having only z = 0,∞ as singu-
larities. We note that this differential equation need not be the lowest order differential
equation which admits f(z) as a solution. We call the latter the minimal differential
equation satisfied by f(z). This differential equation may have singularities, which are
then necessarily apparent singularities.
For example, the function (z−1)ez is an E-function, and its minimal differential equation
reads (z − 1)f ′ = zf . So we have a singularity at z = 1. The equation refered to in
André’s theorem might be f ′′ − 2f ′ + f = 0.
The startling feature of André’s theorem is that it allows us to give transcendence proofs.
This is explained by the following two corollaries.

Corollary 3.4.2 Let f(z) be an E-function with coefficients in Q and suppose that
f(1) = 0. Then 1 is an apparent singularity of the minimal differential equation satisfied
by f .

As we just noted, the simplest example is of course f = (z − 1)ez, an E-function which
vanishes at z = 1. Its minimal differential equation is (z − 1)f ′ = zf .

F.Beukers, E-functions and G-functions
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Proof. Consider f(z)/(1− z). This is an entire analytic function. Suppose that

f(z) =
∑
n≥0

fn

n!
zn.

Then the power series of f(z)/(1− z) reads

f(z)
1− z

=
∑
n≥0

gn

n!
zn

where

gn =
n∑

k=0

n!
k!

fk.

Suppose that the common denominator of f0, . . . , fn and the sizes |fn| are bounded
by Cn for some C > 0. Then clearly the common denominator of g0, . . . , gn are again
bounded by Cn. To estimate the size of |gn| we use the fact that 0 = f(1) =

∑
k≥0 fk/k!.

More precisely,

|gn| =

∣∣∣∣∣−∑
k>n

n!fk/k!

∣∣∣∣∣
≤

∑
k>n

|fk|/(n− k)!

≤
∑
k>n

Ck/(n− k)! < CneC

So |gn| is exponentially bounded in n. Hence f(z)/(1− z) is an E-function. Notice that
this argument only works if f(z) is an E-function with coefficients in Q.
By Andre’s theorem f(z)/(1 − z) satisfies a differential equation without singularity
at z = 1. Hence its minimal differential equation has a basis of analytic solutions at
z = 1. This means that the original differential equation for f(z) has a basis of analytic
solutions all vanishing at z = 1. So z = 1 is apparent singularity. 2

Corollary 3.4.3 π is transcendental.

Proof. Suppose α := 2πi algebraic. Then the E-function eαz − 1 vanishes at z = 1.
The product over all conjugate E-functions is an E-function with rational coefficients
vanishing at z = 1. So the above corollary applies. However linear forms in exponential
functions satisfy differential equations with constant coefficients, contradicting existence
of a singularity at z = 1. 2

In [3] it is shown that ideas like the one above lead to a completely different proof of
the Siegel-Shidlovskii theorem. However, by a combination of André’s Theorem and
differential galois theory one can show more.

Theorem 3.4.4 (Beukers, 2004) Let f(z) be an E-function and suppose that f(ξ) =
0 for some ξ ∈ Q∗. Then ξ is an apparent singularity of the minimal differential equation
satisfied by f .

In [8] it is shown that this Theorem implies Theorem 3.3.3.
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3.5 Basic E-functions

We have seen above that (z − 1)ez is an E-function which vanishes at z = 1 and whose
minimal differential equation has a singularity at z = 1. All this seems a bit artificial
because it is clear that we should be looking at the function ez. A similar phenomenon
occurs in general.

Theorem 3.5.1 Let f(z) = (f1(z), . . . , fn(z)) be E-function solution of system of n first
order equations. Then there exists n×n- matrix B with entries in Q[z] and det(B) 6= 0
and E-functions e(z) = (e1(z), . . . , en(z) such that f(z) = Be(z) and e(z) satisfies
system of equations with singularities in the set {0,∞}.

3.6 Exercises

Exercise 3.6.1 Let k1, . . . , kp,m1, . . . ,mq be positive integers and suppose that d =
m1 + · · ·+ mq − (k1 · · ·+ kp) is positive. Define

f(z) =
∑
n≥0

(k1n)!(k2n)! · · · (kpn)!
(m1n)!(m2n)! · · · (mqn)!

zkn.

1. Show that f satisfies a linear differential equation of order m1 + · · ·+ mq.

2. Show that f is an E-function

3.7 An example of relations between E-functions

Example

f(z) =
∞∑

k=0

((2k)!)2

(k!)2(6k)!
zk

and f(z4) is an E-function satisfying a differential equation of order 5. The differential
galois group is SO(5, C). Dimension of its orbits is 4 and we have a quadratic form Q
with coefficients in Q(z) such that

Q(f, f ′, f ′′, f ′′′, f ′′′′) = 1

Explicitly,

f(z) =
∞∑

k=0

((2k)!)2

(k!)2(6k)!
(2916z)k

satisfies
FtQF = (z)

where

F =


f(z)

Df(z)
D2f(z)
D3f(z)
D4f(z)

 , D = z
d

dz
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and

Q =


z − 324z2 −18z 198z −486z 324z
−18z −10

9
23
2 −28 18

198z 23
2 −120 297 −198

−486z −28 297 −729 486
324z 18 −198 486 −324
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4 G-functions

4.1 Definition

After the successful work on transcendence of values of E-functions the question arose
whether Siegel’s method could also be applied to powerseries that are reminiscent of
geometric series (much like the resemblance between E-functions and ez).
An analytic function f(z) given by a powerseries

∞∑
n=0

akz
k

with ai ∈ Q for all i and positive radius of convergence, is called a G-function if

1. f(z) satisfies a linear differential equation with coefficients in Q(z).

2. Both |an| and the common denominators den(a0, . . . , an) are bounded by an ex-
ponential bound of the form Cn, where C > 0 depends only on f .

Examples:

Theorem 4.1.1 The following Taylor series f(z) =
∑

n≥0 fnzn with fn ∈ Q are G-
functions.

1. f(z) is algebraic over Q(z) (Eisenstein theorem).

2. f(z) = 2F1(α, β, γ|z), a Gauss hypergeometric series with rational parameters
α, β, γ.

3. f(z) = Lk(z) =
∑

n≥1
zn

nk , the k-th polylogarithm.

4. f(z) =
∑∞

k=0 akz
k where a0 = 1, a1 = 3, a2 = 19, a3 = 147, . . . are the Apéry

numbers corresponding to Apéry’s irrationality proof of ζ(2). They are determined
by the recurrence relation (n + 1)2an+1 = (11n2 − 11n + 3)an − n2an−1.

4.2 Periods

Values of G-functions at algebraic points play an important role in arithmetic and al-
gebraic geometry. To illustrate this point we remind you of the values of the Riemann
zeta-function

ζ(k) =
1
1k

+
1
2k

+
1
3k

+ · · ·

These are the values at z = 1 of the polylogarithm Lk(z) defined above. For even k it
is known that ζ(k)/πk is rational (Euler), but for odd k almost nothing is known. The
irrationality of ζ(3) was fairly recently proved by R.Apéry in 1978 (see [6] and [16]) and
in 2000 T.Rivoal, [5], showed that there are infinitely many irrational numbers among
ζ(k) with k odd.
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In a slightly more general setting values of Dirichlet L-series at integer points can also be
included as values of G-functions. For example, it is not known if the so-called Catalan
constant

L(2, χ4) =
1
12
− 1

32
+

1
52
− 1

72
+ · · ·

is irrational or not. Here χ4 denotes the odd Dirichlet character with conductor 4.
Lastly, periods of differential forms on algebraic varieties defined over Q are also a
source of values of G-functions. To illustrate this point we recall the Euler integral for
the hypergeometric function

2F1(1/5, 4/5, 8/5|z) =
Γ(8/5)
Γ(4/5)2

∫ 1

0

dx

x1/5(1− x)1/5(1− zx)1/5
.

This integral can be interpreted as a period (integral over a closed loop) of the differential
form dx/y on the algebraic curve y5 = x(1− x)(1− zx).
Transcendence theory for periods of 1-forms on algebraic curves or abelian varieties is
quite well developed as a result of farreaching generalisations of Baker’s method for
linear forms in logarithms. Unfortunately, irrationality and transcendence for periods
of n-forms with n ≥ 2 is mostly terra incognita at this moment. Siegel’s theory for
G-functions gives us very limited information at the moment.
Zagier and Kontsevich [14] have formulated a number of conjectures on transcendence
and algebraic (in)dependence of periods.

4.3 Transcendence results

As we indicated previously, irrationality and transcendence results for values of G-
functions are not nearly as nice as for E-functions. In fact, this cannot be expected
since we have to make exceptions a priori. For example, algebraic functions (over Q(z))
are G-functions but, trivially, their values at algebraic arguments are again algebraic.
Furthermore, Gaussian hypergeometric functions sometimes assume algebraic values at
algebraic arguments. Here are two well-known examples

2F1

(
1
12

,
5
12

,
1
2

∣∣∣∣ 1323
1331

)
=

3
4

4
√

11.

2F1

(
1
12

,
7
12

,
2
3

∣∣∣∣ 64000
64009

)
=

2
3

6
√

253.

Transcendence of values of hypergeometric functions at algebraic arguments was de-
scribed in [21] and is based on Baker-Wüstholz theory. Unfortunately there is a gap in
the algebraic-geometric part of the proof of the main theorem which was only later filled
in by Yafaev (see the paper by Edixhoven and Yafaev, [12]).
Roughly speaking the general approach in Siegel’s sense doesn’t give transcendence
results, but only linear independence of G-function values at arguments sufficiently close
to the origin.

F.Beukers, E-functions and G-functions
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4.4 Irrationality results

On pages 239-241 in [17] Siegel indicates what sort of result might be attainable using
his approach. In spite of that the first elaborated results became only available in the
1970’s with the work of Galochkin, [13] and slightly later, E. Bombieri, [9]. In these
papers a very strong condition was required in order for Siegel’s method to work. They
are known as Galochkin’s condition (from [13]) and Bombieri’s Fuchsian of arithmetic
type (from [9]). It turns out that these conditions are equivalent (see [11], Ch VII, Thm
2.1) and we formulate Galochkin’s condition now.
Just as with E-functions we start with an n× n-system of linear differential equations

dy
dz

= Gy

where G is an n×n-matrix with entries in Q(z). By induction we define for s = 1, 2, 3, . . .
the iterated n× n-matrices Gs by

dsy
dzs

= Gsy.

Notice that
Gs+1 = GsG +

dGs

dz
.

Let T (z) be the common denominator of all entries of G. Then, for every s, the entries
of T (z)sGs are polynomials. Denote the least common denominator of all coefficients of
all entries of T (z)mGm/m! (m = 1, . . . , s) by qs.

Definition 4.4.1 With notation as above, we say that the system y′(z) = G(z)y(z)
satisfies Galochkin’s condition if and only if there exists C > 0 such that qs < Cs for all
s ≥ 1.

A typical result obtainable with G-functions via Siegel’s method is the following.

Theorem 4.4.2 (Galochkin) Let (f1(z), . . . , fn(z) be a solution vector of a system of
first order equations of the form y′ = Gy and suppose that the fi(z) are G-functions with
coefficients in Q. Suppose also that f1(z), . . . , fn(z) are linearly independent over Q(z)
and that the system satisfies Galochkin’s condition. Then there exists C > 0 such that
f1, (a/b), . . . , fn(a/b) are Q-linear independent whenever a, b ∈ Z and b > C|a|n+1 > 0.

In [9] Bombieri has extended results of this type in the direction of algebraic indepen-
dence of bounded degree and with algebraic coefficients from a number field.
A major innovation was made by the Chudnovsky’s in 1984, [10], who showed that
Galochkin’s condition was in many cases automatically satisfied.

Theorem 4.4.3 (Choodnovsky) Let (f1(z), . . . , fn(z) be a solution vector consisting
of G-functions of a system of first order equations of the form y′ = Gy. Suppose
that f1(z), . . . , fn(z) are linearly independent over Q(z). Then the system satisfies Ga-
lochkin’s condition.
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5 Differential equations satisfied by G-functions

5.1 Introduction

Theorem 4.4.3 does not only give an interesting irrationality result for values of G-
functions, it is also of fundamental importance for the theory of G-functions. We discuss
the following consequence here.

Theorem 5.1.1 Let f be a non-trivial G-function and let Ly = 0 be the linear differ-
ential equation of minimal order having f as a solution. Then Ly = 0 is a Fuchsian
linear differential equation with rational local exponents.

The usual proof goes roughly like this. Choodnovsky’s theorem implies that the equation
Ly = 0 is globally nilpotent, in the terminology of Dwork and Katz, see [11], p98. Then
a Theoreom by Katz implies that Ly = 0 is Fuchsian with rational local exponents.
In these notes we shall adopt a more direct approach and a more modest goal.

Theorem 5.1.2 Let f be a non-trivial G-function and let Ly = 0 be the linear differ-
ential equation of minimal order having f as a solution. Then z = 0 is either regular or
a regular singular point of Ly = 0.

5.2 Proof of Theorem 4.4.3

Let us adopt the notations of Theorem 4.4.3. Let T (z) be the common denominator of
the entries of G. We will assume that T (z) and the entries of T (z)G are polynomials
with coefficients in the algebraic integers.
Let N,M be positive integers and let Q,P1, . . . , Pn be polynomials of degree at most N ,
not all trivial, such that

Qf −P = O(zN+M )

where P stands for the column vector with entries P1, . . . , Pn. Take the derivative on
both sides. We get

Q′f + QGf −DP = O(zN+M−1

where D denotes derivation with respect to z. Subtract G applied to the original equa-
tion to get

Q′f − (D −G)P = O(zN+M−1).

Repeat this m times and divide m! and multiply by T (z)m,

T (z)m

m!
Q(m)f − T (z)m

m!
(D −G)mP = O(zN+M−m).

Let t the maximum of the degrees of T (z) and the entries of T (z)G. Suppose that
M−m > mt. The idea of Choodnovsky is that the coefficients of the entries of T (z)m

m! (D−
G)mP coincide with the Taylor series coefficients of T (z)m

m! Q(m)f . At least, the coefficients
of all powers zk with k < N + M −m. Determination of the arithmetic nature of the
coefficients of T (z)m

m! Q(m)f is easy. We can then use this information to deduce something
about Gs.
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Lemma 5.2.1 Let Gs be the n× n-matrix with entries in Q(z) such that

1
s!

y(s) = Gsy

for every solution y of the system ′y′ = Gy. Then, for any n-vector P we have

GsP =
s∑

j=0

(−1)j

(s− j)!j!
Ds−j(D −G)jP.

Proof. Induction on s. 2

Let us write Ph = 1
h!(D −G)hP. Then it follows from our Lemma that

GsPh =
s∑

j=0

(−1)j

(s− j)!

(
j + h

h

)
Ds−jPj+h.

Let us now write R(k) for the n × n matrix with the columns
(
k+h

h

)
Pk+h for h =

0, 1, . . . , n− 1. Then we obtain the n× n matrix equality.

GsR(0) =
s∑

j=0

(−1)j

(s− j)!
Ds−jR(j). (4)

According to Shidlovskii’s Lemma 6.2.7 the matrix R(0) is invertible. So we can express
Gs in terms of the Pm with m ≤ s + n− 1.
Let us suppose that the coefficients of the polynomial Q are algebraic integers of size
bounded by C. Let D be the common denominator of the coefficients of 1, z, z2, . . . , zN+M

of the components of f . Then the polynomial components of P, defined by DQ(z)f−P =
O(zN+M ) have algebraically integral coefficients. For any m we have the relation

T (z)m

m!
DQ(m)(z)f − T (z)mPm = O(zN+M−m).

Consequently the coefficients of the polynomial components of T (z)mPm are alge-
braically integral whenever N + M −m > N + tm. A fortiori the entries of T (z)mR(m)

are polynomials with algebraically integrals. Similarly the coefficients of the entries of
T (z)j

(s−j)!D
s−jR(j) are polynomial with algebraically integral coefficients. To estimate the

common denominator of the coefficients of the entries of T (z)sGs we need to estimate the
size of the coefficients of T (z)n−1 det(R(0)). It is straightforward to check that this size
is bounded by c1(DC)n, where c1 is a constant depending only on the system y′ = Gy
and not on Q.
Let us now set M = N/(2n) and s = [N/(2n(t + 1))]. Then the system Q(z)f − P =
O(zN+M ) represents a system of nN/(2n) linear homogeneous equations for the N + 1
unknown coefficients of Q(z). According to Siegel’s Lemma there exists a solution Q(z),
non-trivial, whose coefficients are bounded in size by c2D where c2 depends only on f .
Since f has G-functions as components there exists γ > 0, depending only on f , such
that D < γM+N . Hence the size of the coefficients of det(R(0)) is bounded by c1(CD)n <

c1(c2D
2)n < c1c

n
2 (γ2Mn+2Nn) = c1c

n
2γ(2n+1)N . This is also the bound for the common

denominator of G1, G2, . . . , Gs. In terms of s this bound reads c1c
n
2γ2n(2n+1)(t+1)s. In

other words, an exponential bound in s and Choodnosvky’ theorem is proved.
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5.3 Proof of Theorem 5.1.2

In this section we start with the differential equation Ly = 0 which we assume has order
n. Consider the corresponding system of first order equations. By Theorem 4.4.3 this
system satisfies the Galochkin condition. Let us see what this means in terms of the
differential equation. Write the differential Ly = 0 equation as

T (z)y(n) = Qn−1(z)y(n−1) + · · ·+ Q1(z)y′ + Q0y

where T (z), Q0(z), . . . , Qn−1(z) are polynomials in Q[z] with algebraically integral coef-
ficients. By recursion on m we find rational functions Qm,r ∈ Q(z) for r = 0, 1, . . . , n−1
such that

y(m) = Qm,n−1(z)y(n−1) + · · ·+ Qm,1(z)y′ + Qm,0(z)y.

In particular Qn,r(z) = Qr(z)/T (z). By construction T (z)m−n+1Qm,r is a polynomial
in Q[z] with algebraically coefficients for every m and r = 0, 1, . . . , n− 1.
Galoschkin’s condition now comes down to the fact that there exists C > 0 such
that for every integer N the common denominator of all coefficients of all polynomi-
als 1

m!T (z)m−n+1Qm,r with n ≤ m ≤ N, 0 ≤ r ≤ n− 1 is bounded by CN .
The proof of Theorem 5.1.2 can be achieved by using Theorem 4.4.3 and the following
Proposition.

Proposition 5.3.1 Let Ly = 0 be a linear differential equation which satisfies Ga-
loschkin’s condition. Then z = 0 is a regular singularity.

Proof. Let us write the equation Ly = 0 in the form

zny(n)(z) = Bn−1(z)zn−1y(n−1)(z) + · · ·+ B1(z)zy′(z) + B0(z)y(z).

Here the Bk(z) are rational functions. Suppose their common denominator is T (z).
When the Bk(z) are all regular in z = 0 the point z = 0 is a regular singularity. Define

λ = max(v(Bn−1),
1
2
v(Bn−2),

1
3
v(Bn−3), . . . ,

1
n

v(B0))

where v(R) denotes the pole order of R(z) at z = 0. Then z = 0 is an irregular
singularity if and only if λ > 0. Let us suppose that λ > 0. For any m we define the
rational functions Am,r by

zmy(m) =
n−1∑
r=0

Am,r(z)zry(r). (5)

We will show that the limit of z(m−r)λAm,r exists as z → 0. Call this limit αm,r. We
will also show that αm,r is non-zero infinitely often and grows at most exponentially in
m. As a result our equation cannot satisfy Galochkin’s condition.
We first derive a recurrence relation for the Am,r. Take the derivative of (5) and multiply
by z,

mzmy(m) + zm+1y(m+1) =
n−1∑
r=0

(zA′m,r + rAm,r)zry(r) + Am,rz
r+1y(r+1).
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Apply the differential equation to change the right hand side into

n−1∑
r=0

(zA′m,r + rAm,r)zry(r) + Am,n−1

(
n−1∑
r=0

Brz
ry(r)

)
+

n−1∑
r=1

Am,r−1z
ry(r).

Adopting the convention Am,−1 = 0 this equals

n−1∑
r=0

(zA′m,r + rAm,r + BrAm,n−1 + Am,r−1)zry(r).

As a result we derive the following recurrence relation,

Am+1,r = zA′m,r + (r −m)Am,r + BrAm,n−1 + Am,r−1.

Define Ãm,r = z(m−r)λAm,r and B̃r = z(n−r)λBr. After multiplication by z(m+1−r)λ the
recurrence changes into

Ãm+1,r = zλ+1Ã′m,r + (r −m)(1 + λ)zλÃm,r + B̃rÃm,n−1 + Ãm,r−1.

We define βr = limz→0 B̃r. Notice that this limit exists by the definition of λ and that
not all βr are zero. We now let z → 0 in our recurrence and define αm,r = limz→0 Ãm,r.
We obtain

αm+1,r = βrαm,n−1 + αm,r−1.

In matrix form 
αm+1,n−1

...
αm+1,1

αm+1,0

 =


βn−1 1 0 . . . 0
βn−2 0 1 . . . 0

...
. . . 0

β1 0 0 . . . 1
β0 0 0 . . . 0




αm,n−1
...

αm,1

αm,0

 .

It follows from the definitions that αn,r = βr. Writing

B =


βn−1 1 0 . . . 0
βn−2 0 1 . . . 0

...
. . . 0

β1 0 0 . . . 1
β0 0 0 . . . 0


it is not hard to verify that 

αm,n−1
...

αm,1

αm,0

 = Bm


0
...
0
1

 .

The latter vector is non-zero for every m and its coefficients have size which grows at
most exponentially in m.
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5.4 Proof of Theorem 3.4.1

We are now ready to prove André’s theorem on E-functions. Notice that if f(z) =∑
n≥0

an
n! z

n is an E-function then, by definition, g(z) =
∑

n≥0 anzn is a G-function.
They are related by the formal Laplace transform∫ ∞

0
e−xzf(z)dz =

1
x

g(
1
x

).

For any non-negative integers k, m and repeated partial integration we can derive the
equality ∫ ∞

0
e−xz

(
d

dz

)k

zmf(z)dz = xk

(
− d

dx

)m 1
x

g(
1
x

).

Now let us assume that g(x) is a G-function and so, it satisfies a Fuchsian differential
equation. Hence 1

xg( 1
x) also satisfies a linear differential equation. Assume that it is of

the form
K∑

k=0

M∑
m=0

Ak,mxk

(
− d

dx

)m 1
x

g(
1
x

) = 0.

Then, by our Laplace transform property,

0 =
∫ ∞

0
e−xz

K∑
k=0

M∑
m=0

Ak,m

(
d

dz

)k

zmf(z)dz.

Hence
K∑

k=0

M∑
m=0

Ak,m

(
d

dz

)k

zmf(z)dz = 0.

We assume that K is the largest index such that AK,m 6= 0 for some m. Assume that M
is the largest index such that Ak,M 6= 0 for some k. So g satisfies an equation of order M
and f is annihilated by an operator of order K. Because we are dealing with a Fuchsian
operator we have that AK,M 6= 0 and AK,m = 0 for all m < M . For the operator
annihiliting f this means that it is of order K and that the coefficient of f (K)(z) equals
AK,MzM . This is precisely the content of Theorem 3.4.1.
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6 Siegel’s method

In this section we sketch the ideas of Siegel and Shidlovskii to obtain transcendence
statements and irrationality results for values of E-functions and G-functions.

6.1 Siegel’s Lemma

Theorem 6.1.1 (Siegel’s Lemma) Let K be a number field of degree δ. Consider the
system of linear equations

n∑
j=1

aijxj = 0 (i = 1, . . . ,m)

where aij ∈ OK for all i, j. Let
A = max

ij
|aij |.

Suppose m < n. Then the system has a non-trivial solution in algebraic integers xj in
K such that

max
i
|xi| ≤ c1(c1nA)m/(n−m).

Here c1 is positive number depending only on K.

6.2 Shidlovskii’s Lemma

In his original work Siegel had to impose a number of complicated technical conditions
on the system of differential equations. This was circumvented in an elegant way by
A.B.Shidlovskii in 1956. The main idea rests on the following Proposition.

Proposition 6.2.1 Let A be an n × n matrix with entries in C(z). Denote for any
column vector P with entries in C(z), (D −A)P = P′ −AP.
Then there exists a constant c(A) > 0 depending only on A such that for any non-trivial
P ∈ C(z)n the C(z)-linear space spanned by (D − A)iP, i = 0, 1, 2, . . . has a basis
consisting of vectors in C(z)n all of whose non-zero components have degrees bounded
by c(A).

Proof. Suppose that the dimension of the space spanned by all (D − A)iP is r. Then
the vectors (D − A)iP with i = 0, 1, 2, . . . , r − 1 form a basis of this space. Moreover
there exist rational functions A0, A1, . . . , Ar−1 such that

(D −A)rP = Ar−1(D −A)r−1P + · · ·+ A1(D −A)P + A0P.

Let y be any solution of the system y′ = −Aty where At denotes the transpose of
A. A straightforward computation shows that (D − A)iP · y = (P · · ·y)(i) for any i.
Furthermore P · y satisfies the linear differential equation

u(r) = Ar−1u
(r−1) + · · ·+ A1u

′ + A0u.
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6.2 Shidlovskii’s Lemma 27

Denote the C-linear space of solutions of this equation by W and the space of solutions
of the system y′ = −Aty by V . Then the map Φ : y 7→ P · y defines a C-linear map
from V to W . Since dim(W ) = r and dim(V ) = n the kernel of Φ has dimension at least
n−r. Moreover, (D−A)iP ·y = (P ·y)(i) = 0 for any y ∈ ker(Φ) and i = 0, 1, . . . , r−1.
Hence dim ker(Φ) is at most n− r. Therefore the dimension equals n− r.
The space ker(Φ) is now a differentially invariant subspace (see Definition 6.2.2) of
solutions of y′ = −Ay. The space of relation between the components of all y ∈ ker(Φ)
is precisely the space spanned by the (D − A)iP. Hence application of Lemma 6.2.3
with −At instead of A gives us the desired basis. 2

Definition 6.2.2 Consider an n × n system of first order linear equations. A linear
subspace W of the vector space of solutions is called differentially invariant if the space
of vectors Q ∈ C(z)n such that Q ·y = 0 for all y ∈ W has C(z)-dimension n−dim(W ).

Clearly, in the proof of Shidlovskii’s Lemma we encounter such subspaces.

Lemma 6.2.3 Consider the n× n-system of differential equations y′ = A(z)y. Then
there exists a constant c(A), depending only on A, with the following property. Let
W be any differentially invariant subspace of solutions of y′ = Ay and suppose its
dimension is s. Then there is a basis Q1, . . . ,Qn−s for the C(z)-linear relations between
the components of y ∈ W all of whose entries have degree ≤ c(A).

Proof. Choose a basis y1, . . . ,ys of W . Let Y be the n× s matrix whose columns are
the vectors yi for i = 1, 2 . . . , s. Without loss of generality we can assume that the first
s rows of Y have rank s. Denote the entries of Y by Yij and let V = (Yij)i,j=1,...,s. A
basis for the C(z)-linear relations can be obtained as follows. For any h = 1, 2, . . . , n− s
the h + s-th row of Y can be written as a linear combination of the first s rows with
coefficients A1, . . . , As say. Since the space of C(z)-linear relations has rank n − s we
have Ai ∈ C(z) for i = 1, . . . , s. By Cramer’s rule every Ai is the quotient of s × s
submatrices of Y .
The s × s submatrices of Y form the components of an

(
n
s

)
×
(
n
s

)
system of first order

linear differential eqations which is called the s-th exterior power of y′ = Ay. We
denote it by u′ = A(s)u. Application of Lemma 6.2.4 to the latter system shows that
the coefficients Ai have a degree bounded only dependent on s, and not on W itself. 2

Lemma 6.2.4 Consider an n × n system of first order linear differential equations.
There exists a constant c(A) > 0 with the following property. Suppose that the com-
ponents of a vector solution y have a ratio R(z) ∈ C(z). Then the degree of R(z) is
bounded by c(A).

Proof. Suppose the components involved are the first and second component Let
y1, . . . ,yn be a basis of solutions of the system. Denote yi = (yi1, yi2, . . . , yin). There
exist λ1, . . . , λn such that

R(z) =
λ1y11 + λ2y21 + · · ·λnyn1

λ1y12 + λ2y22 + · · ·λnyn2 ∈ C(z)
.
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Let v1, . . . , vm be a basis of the C(z)-linear vector space spanned by all yi1, yi2. Suppose
yi1 =

∑m
k=1 µi,kvk and yi2 =

∑m
k=1 νi, kvk. Then, concentrating on the coefficients of v1,

R(z) =
λ1µ11 + λ2µ21 + · · ·+ λnµn1

λ1ν11 + λ2ν21 + · · ·+ λnνn1
.

Since the µi1, νi1 are independent of the choice of particular solution vector, we see that
the degree of R(z) is bounded by a number depending only on A. 2

Lemma 6.2.5 Suppose we have n functions f1, . . . , fn analytic around z = 0 and C(z)-
linearly independent. Let M be a positive integer and let R1, . . . , Rn ∈ C(z) be rational
functions of degree bounded above by M . Then the vanishing order of the linear combi-
nation

R1f1 + R2f2 + · · ·+ Rnfn

is bounded above by a number depending only on the fj and M .

Proof. Exercise.

We shall now formulate and prove the two version of Shidlovskii’s Lemma.
Let f(z) be a vector solution of an n×n-system of first order linear differential equations

df
dz

= A(z)f .

Suppose that the entries of A(z) are rational functions in C(z) and that the components
of f are Taylor series in z. We denote the common denominator of the entries of A by
T (z). Consider a linear form P · f = P1f1 + P2f2 + · · ·+ Pnfn where the Pi ∈ Z[z] and
f1, . . . , fn are the components of f . From such a linear form we can produce a derived
linear form by differentiation. Namely

(P · f)′ = P′ · f + P · f ′ = P′ · f + (AtP) · f ,

where P denotes the column vector with components (P1, . . . , Pn) and At is the transpose
of A. The newly formed linear form has coefficient vector P′ + AtP. Let us denote it
by (D + At)P . Now form the n × n coefficient determinant ∆ of the vectors P, (D +
At)P, (D + At)2P, . . . , (D + At)n−1P. In the Siegel-Shidlovskii method it is of crucial
importance that ∆(z) is non-vanishing.

Theorem 6.2.6 (Shidlovskii’s Lemma I) Let 0 < ε < 1 and let N be a positive
integer. Let P1, . . . , Pn be polynomials, not all trivial, of degrees ≤ N such that P · f =
P1f1 + . . . + Pnfn has vanishing order at least (n − ε)N . Then, when N is sufficiently
large, ∆(z) 6= 0.

Proof. Consider the C(z)-linear space spanned by (D+At)iP and suppose its dimension
is r. According to Proposition 6.2.1 there exists c1(A) > 0 depending only on A,
and a C(z)-basis R1, . . . ,Rr of the space where the degree of the entries of all Ri is
bounded by c(A). Let T (z) be a common denominator for the entries of A(z). Then the
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polynomial vectors T (z)k(D+At)kP are C(z)-linear combinations of R1, . . . ,Rr for k =
0, 1, . . . , r−1. Let t be the maximum of the degree of zT (z) and the degrees of the entries
of T (z)A(z). Then an upper bound for the degree of the entries of zkT (z)k(D + At)kP
is N + kt. Furthermore, zkT (z)k(D + At)kP · f = O(z(n−ε)N ). As a result, at least one
of the linear forms Rl · f has vanishing order

(n− ε)N − r(N + (r − 1)t) > (n− r − ε)N − r2t.

According to Lemma 6.2.5 all linear forms Rl · f have vanishing order at most c2(A),
depending only on A. Therefore, whenever N > (r2t + c2(A))/(1− ε) and n− r > 0 we
get a contradiction. Hence r = n if N is sufficiently large. 2

The second version of Shidlovskii’s Lemma deals with simultaneous rational approxima-
tions to the components of a Taylor series solution of a first order system.
Consider again the system y′ = Ay and let f be a solution vector whose components
are Taylor series.
Let N,M be positive integers and let Q,P1, . . . , Pn be polynomials of degree at most N ,
not all trivial, such that

Qf −P = O(zN+M )

where P stands for the column vector with entries P1, . . . , Pn. Take the derivative on
both sides. We get

Q′f + QAf −DP = O(zN+M−1

where D denotes derivation with respect to z. Subtract A applied to the original equa-
tion to get

Q′f − (D −A)P = O(zN+M−1).

Repeat this m times,

Q(m)f − (D −A)mP = O(zN+M−m).

The determinant of the vectors (D −A)mP, m = 0, 1, . . . , n− 1 is denoted by ∆(z).

Theorem 6.2.7 (Shidlovskii’s Lemma II) Let 0 < ε < 1 and let notations be as
above. Then, when M > N(1− ε)/n and N is sufficiently large, ∆(z) 6= 0.

Proof. To be added...

6.3 Siegel’s method for E-functions, sketch

Suppose that f is an E-function solution of a system

f ′(z) = A(z)f(z)

where the entries of A(z) are in Q(z). We assume that f1, . . . , fn are Q(z)-linear inde-
pendent. Fix 0 < θ < 1 and choose N . We construct polynomials P1, . . . , Pn of degree
≤ N such that

P1f1 + · · ·+ Pnfn = O(z(n−θ)N ).
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This requires the solution of (n − θ)N homogeneous linear equations in the n(N + 1)
unknown coefficients of the Pi. In other words, the number of variables exceeds the
number of equations and we can invoke Siegel’s Lemma to contruct polynomials Pi whose
coefficients are bounded in terms of N . We summarise with the following Lemma.

Lemma 6.3.1 For any sufficiently large integer N there are polynomials Pi(z), i =
1, . . . , n, not all identically zero with degrees at most N and algebraic integer coefficients
of size at most (N !)1+θ such that

P1(z)f1(z) + · · ·+ Pn(z)fn(z) =
∑

m≥(n−θ)N

ρmzm

where |ρm| < N !(m!)−1+θ.

To be finished...
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