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The subject

Suppose we have an analytic function f(z) with power series expansion
∑

n≥0 fnzn

whose coefficients are contained in an algebraic number field, or even Q. It is a
natural question to ask about the irrationality or transcendence of values of f
algebraic or rational points. The standard example is the exponential function
ez whose values at non-zero algebraic points are known to be transcendental.
In order to be able to say anything at all, a number of assumptions have to be
made about f . Siegel’s theory of transcendence (started in 1929) provides us
with two such classes, the E-functions and G-functions. Both of them satisfy
a linear differential equation polynomial coefficients. The E-functions have a
power series expansion which is reminiscent of the exponential function. For
the case of rational coefficients fn they look like∑

n≥0

an

n!
zn

with an ∈ Q and there exists C > 0 such that both |an| and the common
denominator of a0, . . . , an are bounded by Cn for all n ≥ 0. The transcendence
theory of the values of E-functions is quite complete. Siegel also introduced
G-functions, having a power series

∑
n≥0 anzn where the an again satisfy the

same assumptions as above. They are reminiscent of the geometric series
∑

n zn,
hence the name G-functions. The best known example of a G-function is the
so-called Gauss hypergeometric function

2F1(a, b, c|z) =
∑
n≥0

(a)n(b)n

(c)nn!
zn

where (x)n = x(x + 1) · · · (x + n − 1) and a, b, c ∈ Q. This power series has
radius of convergence of 1. Clearly, E-functions and G-functions are closely
related, but the transcendence theory for G-functions is very rudimentary. In
fact, G-functions may have algebraic values at non-zero algebraic points. Since
algebraic functions (over Q(z)) are also G-functions, this is no surprise, but there
exist interesting evaluations of transcendental G-functions as well. A striking
example is
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11.

During the lectures we shall briefly discuss the transcendence and irrationality
results for values of E-functions and G-functions. As a second goal we like to
discuss the question how they can be classified. For example, the arithmetic
conditions on these functions influence the analytic properties of the differential
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equation which they satisfy. For G-functions there are some fundamental results
in this direction by N.Katz and the Choodnovsky’s, which will be discussed
during the lectures. For E-functions we explain Y.André’s beautiful work which
provides us with a new transcendence technique. Although Siegel first wondered
about it, it is still not known what a G-function or E-function really is. Time
permitting we may be able to discuss some ideas about this.

The projects

Explicit one variable G-functions

Let k1, . . . , kr and l1, . . . , ls be positive integers such that k1 + · · · + kr = l1 +
· · ·+ ls. Then the series

∑
n≥0 anzn with

an =
(k1n)! · · · (krn)!
(l1n)! · · · (lsn)!

is a G-function.

Problem Determine those combinations of ki, lj such that an is an integer for
all n.

This is, to some extent, an open problem and it is not clear what the answer is.
There are a number of very nice partial results and we shall describe them here.
A first observation is the following exercise, which presents itself immediately.
It is also known as Landau’s criterion

Exercise 1. Denote θ(k, l, x) :=
∑s

i=1{lix}−
∑r

j=1{kjx} where k = (k1, . . . , kr), l =
(l1, . . . , ls) and {x} denotes x minus the largest integer not exceeding x. Show
that the numbers an defined above are all integers if and only if θ(k, l, x) ≥ 0
for all x ∈ R.

Some other easy properties are the following,

Exercise 2 Show,

- θ(k, l, x) is locally constant.

-
∫ 1

0
θ(k, l, x)dx = (s− r)/2.

- an ∈ Z for all n implies that s ≥ r.

- an ∈ Z for all n and s = r is only trivially possible, i.e. k = l.

Some of these things can be found in F.Rodriguez-Villegas draft ”Hypergeomet-
ric families of CY threefolds”. A beautiful observation by F.Rodriguez-Villegas
(see the link ”Integral ratios...” on the webpage),

Theorem The generating function
∑

n≥0 anzn is algebraic if and only if an ∈ Z
for all n and s− r = 1.
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This work is based on work by Beukers-Heckman, Invent.Math 95 (1989), 325-
354, which you find summarised on these webpages. The full list of k, l satisfying
Rodriguez-Villegas criterion could be provided using the list given in the Inven-
tiones paper. However, that list is constructed by using properties of complex
reflection groups. It would be a challenge to recover a full list based on other
(number theoretical) principles.
Of course it is an even bigger challenge to find a full answer to the above
Problem. Of course, when you have no other ideas one could try to start with
the case r = 2 (the case r = 1 being trivial).

Explicit two variable G-functions

An even bigger challenge is the case when we have linear forms k1(m,n), . . . , kr(m,n)
and l1(m,n), . . . , ls(m,n) in 2 variables m,n with non-negative integer coeffi-
cients and such that

∑
i ki(m,n) =

∑
j lj(m,n). Define

b(m,n) =
k1(m,n)! · · · kr(m,n)!
l1(m,n)! · · · ls(m,n)!

.

One might think of these numbers as coefficients of a 2-variable G-function. The
question is to find non-trivial examples of forms ki, lj such that b(m,n) is an
integer for all m,n ≥ 0, and see how far one can get.
Of course Exercises 1 and 2 from the previous subsection could be carried out
here too. In this case no complete lists are known (with a number of exceptions
that we may discuss).
Here are some non-trivial examples which can be found in P.A. Picon, European
J. of Combinatorics 1994 (15), 561-577, which can also be downloaded from the
p;resent pages.

(5m)!(5n)!
(2m)!(2n)!(2m + n)!(2n + m)!

on page 571 and another (admittedly 3D)

(3m + 3n)!(5m + 2k)!(5n + 2k)!
(2m + 2n + k)!2(m + n + k)!m!3n!3k!

.

Algebraic values of hypergeometric functions

This requires some background in the theory of hypergeometric functions and
their monodromy properties. Based on classical identities and evaluations of
hypergeometric functions one can produce a examples of evaluations at rational
arguments which are algebraic. Some examples,

2F1(1− 3a, 3a, a|1/2) = 22−3a cos πa, a ∈ Q

2F1
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)
= 25/24 · 3−11/12 · 5

√
sinπ/24
sin 5π/24

.
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The purpose of this project is to find an overview, as complete as possible, of
such evaluations.
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