Lecture 1

Frits Beukers

Arithmetic of values of E- and G-function



Let f(z) € Q[[z]] be power series in z with coefficients in Q, with
positive radius of convergence p. We assume f(z) is not algebraic

over Q(z).
Question

Let @ € Q and suppose 0 < |a| < p. Is f(«) transcendental?
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A bizarre function

There exist non-algebraic f € Q[[z]] with p = oo such that

f(a)eQforalla € Q



There exist non-algebraic f € Q[[z]] with p = co such that
fla)eQforalla € Q

Idea of construction:
Enumerate the elements of Z[z] by Py, P,, ... and consider

f(2) =14 cz"Pi(z)--- Pu(2)
k=1

where ¢, € Q are chosen such that the resulting f has infinite
radius of convergence.
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There exist non-algebraic f € Q[[z]] with p = co such that
fla)eQforalla € Q

Idea of construction:
Enumerate the elements of Z[z] by Py, P,, ... and consider

f(2) =14 cz"Pi(z)--- Pu(2)
k=1

where ¢, € QQ are chosen such that the resulting 7 has infinite
radius of convergence.

Question: Do there exist f € Z[[z]] with positive radius of
converge p such that f(a) € Q for all « € Q and |a| < p?
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Around 1882 F.Lindemann proved the transcendence of 7. In fact
his method yielded more.

Lindemann-Weierstrass

Let oy, p, ..., a, be distinct algebraic numbers. Then
Qn

e e ... e

are linearly independent over Q.
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Around 1882 F.Lindemann proved the transcendence of 7. In fact
his method yielded more.

Lindemann-Weierstrass
Let oy, p, ..., a, be distinct algebraic numbers. Then
e e ..., e

are linearly independent over Q.

Application: 7 is transcendental.
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Around 1882 F.Lindemann proved the transcendence of 7. In fact
his method yielded more.

Lindemann-Weierstrass

Let oy, p, ..., a, be distinct algebraic numbers. Then

(8% (0% «
e, e* ..., e

are linearly independent over Q.

Application: 7 is transcendental.

Proof: Suppose m were algebraic. Take a; = 0, p = wi. Then
Lindemann-Weierstrass implies that 1, e™ are Q-linear
independent, contradicting ™ = —1.
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Some notations

For any element o € Q we define m to be maximum of the
absolute values of all conjugates of a. We call it the size of a.



For any element o € Q we define |a to be maximum of the
absolute values of all conjugates of a. We call it the size of a.
By den(«) we denote the denominator of c, the smallest positive
integer d such that da is an algebraic integer.
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For any element o € Q we define |a to be maximum of the
absolute values of all conjugates of a. We call it the size of a.

By den(«) we denote the denominator of c, the smallest positive
integer d such that da is an algebraic integer.

For any set of ai,...,a, we denote by den(ayq,...,«,) the lowest
common multiple of the denominators of aq, ..., a,.
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Definition

An entire function f(z) given by a powerseries
oo
2. a
k!
k=

with ax € Q for all k, is called an E-function if
© f(z) satisfies a linear differential equation with coefficients in
Q(2).
@ Both |a,| and the common denominator den(a, ..., ax) are
bounded by an exponential bound of the form C¥, where

C > 0 depends only on f.
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Definition

An entire function f(z) given by a powerseries
oo
2. a
k!
k=

with ax € Q for all k, is called an E-function if
© f(z) satisfies a linear differential equation with coefficients in
Q(2).
@ Both |a,| and the common denominator den(a, ..., ax) are
bounded by an exponential bound of the form C¥, where
C > 0 depends only on f.

Remark: For any E-function there exists a finite extension K of Q
such that a, € K for all k.
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Definition

An entire function f(z) given by a powerseries
oo
2. a
k!
k=

with ax € Q for all k, is called an E-function if
© f(z) satisfies a linear differential equation with coefficients in
Q(2).
@ Both |a,| and the common denominator den(a, ..., ax) are
bounded by an exponential bound of the form C¥, where
C > 0 depends only on f.

Remark: For any E-function there exists a finite extension K of Q
such that ax € K for all k. In most cases of interest: K = Q.
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Siegel used instead of the exponential bound C* in condition 2)
the (seemingly) less restrictive c.(k!)¢ for every ¢ > 0. However, it
is conjectured that the bound (k!)¢ together with the condition of
a linear differential equation is enough to garantee that we have
the exponential bound Ck.
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Siegel used instead of the exponential bound C* in condition 2)
the (seemingly) less restrictive c.(k!)¢ for every ¢ > 0. However, it
is conjectured that the bound (k!)¢ together with the condition of
a linear differential equation is enough to garantee that we have
the exponential bound Ck.

Therefore we shall stick to our definition above.
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E-function examples

= akzk _—
exp(az) = Z—', acQ
k=0
oo 2k 2k
2 o 2n\ z
h(=2) = D = n)(2k)!
k=0 k>0



E-function examples

2. akzk _—
exp(az) = Z—', acQ
k=0
o 2k 2k
z 2n\ z
(=22 = =
02" = D i Z<n>(2k)!
k=0 k>0
The corresponding differential equations read
y'—ay =0
zy'+y —dzy = 0



A very general example, the confluent hypergeometric series,

Oél,...,Oép
F (
plq

ﬂl)"')ﬁq

S9+1-p ) _ S (a)i- - (ap)« Sa+1-p)k
> kz%(ﬁl)k'“(ﬁq)kk!

where g > p (confluence) and «;, 3; € Q for all /.
(x)n is the Pochhammer symbol defined by x(x+1)---(x+n—1).
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A very general example, the confluent hypergeometric series,

Oél,...,Oép
F (
plq

ﬂl)"')ﬁq

S9+1-p ) _ S (a)i- - (ap)« Sa+1-p)k
> kz%(ﬁl)k'“(ﬁq)kk!

where g > p (confluence) and «;, 3; € Q for all /.
(x)n is the Pochhammer symbol defined by x(x+1)---(x+n—1).
pFq satisfies a linear differential equation of order g + 1.

T ET——



The E-functions form a so-called differential ring. More precisely,
Proposition

Let (z),g(z) be E-functions. Then the following functions are
again E-functions

e f'(2)
o f(z)+g(z)
o f(z)g(2)
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The E-functions form a so-called differential ring. More precisely,
Proposition

Let (z),g(z) be E-functions. Then the following functions are
again E-functions

e f'(2)

° f(z)+&(z)

° f(2)g(2)

Let L be any subfield of C. Let f € L[[z]]. Then the following two
statements are equivalent

@ f satisfies a linear differential equation with coefficients in
L(z).

@ L(z)-vectorspace spanned by f and its derivatives is finite
dimensional.
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Product of E-functions

We show that if f, g are E-functions then so is fg. There exists a
number field K so that f, g € K|[[z]].



We show that if f, g are E-functions then so is fg. There exists a
number field K so that f, g € K[[z]].

Differential equation The K(z)-vectorspace spanned by fg and
its derivatives is contained in the space spanned by f()g(). The
latter space is finite-dimensional, hence also the former space.
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We show that if f, g are E-functions then so is fg. There exists a
number field K so that f, g € K[[z]].
Coefficient estimates Write

Zk Zk Zk
f=) fig &= 8 fe=) h'y
k>0 k>0 k>0

Then

“rk
hx = Z <r>frgs-

r+s=k

Ty



We show that if f, g are E-functions then so is fg. There exists a
number field K so that f, g € K[[z]].
Coefficient estimates Write

Zk Zk Zk
f=) fig &= 8 fe=) h'y

k>0 ’ k>0 ’ k>0
Then
Kk
hk = Z <r> frgs-
r+s=k

Notice:

@ den(hy) divides den(fy, ..., fx)den(go,- . ., &)

Q

< k
[l < 2%( max, [f)( max [gs]).
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Let L be any subfield of C. An n x n-system of first order linear
differential equations is given by

yi ¥ Aun A - A\ [(n
d || v5 B Ay Axn - Ao ¥2
dz || ] [ : :
Yn yr/7 Anl An2 e Ann Yn

where Aj; € L(z) for all 7.

E- and G-functions

13 / 24



Let L be any subfield of C. An n x n-system of first order linear
differential equations is given by

yi ¥ Aun A - A\ [(n
d || v5 B Ay Axn - Aoy ¥2
dz || ] [ : :
Yn yr/7 Anl An2 e Ann Yn

where Aj; € L(z) for all 7.
We abbreviate by
y = Ay

where A is the n x n-matrix with entries Aj;.
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Let L be any subfield of C. An n x n-system of first order linear
differential equations is given by

yi ¥ Aun A - A\ [(n
d || v5 B Ay Axn - Aoy ¥2
dz || ] [ : :
Yn yr/7 Anl An2 e Ann Yn

where Aj; € L(z) for all 7.
We abbreviate by

/
y = Ay
where A is the n x n-matrix with entries Aj;.

Let T(z)be the common denominator of the Aj;. The zeros of
T(z) are called the singularities of the system.

E- and G-functions

13 / 24



From equations to systems

Consider the linear n-th order differential equation

y " 4 py "D 4 oy g pay’ ey =0, pi € L(2)



From equations to systems

Consider the linear n-th order differential equation
y " 4 py "D 4 oy g pay’ ey =0, pi € L(2)

Put
n=y, =y, ..., yp=yr



From equations to systems

Consider the linear n-th order differential equation
y " 4 py "D 4 oy g pay’ ey =0, pi € L(2)

Put

n=y, 2=y, ..., ya=ylr
Note that

V=Y Y2=Y3 - Yn1=Yn-



From equations to systems

Consider the linear n-th order differential equation

y " 4 py "D 4 oy g pay’ ey =0, pi € L(2)

Put

n=y, 2=y, ..., ya=ylr
Note that

VI=Y2 Yo=Y3, oo Yno1=Yn:
Finally,

Y = —P1Yn — P2Yn-1 — --- — PnY1-



Consider the linear n-th order differential equation

Y 4+ oy 4 oy g p 1y o+ pay = 0, pi € L(2)

Put
n=y, 2=y, ..., ya=ylr
Note that
VI=Y2 Yo=Y3, oo Yno1=Yn:
Finally,
Y = —P1Yn — P2Yn-1 — --- — PnY1-
Rewrite as
1 0 1 0 0 yi
d |y 0 0 1 0 ¥2
||| : : : :
Y —Pn —Pn-1 —Pn—2 -+ —p1) \Un

T



From systems to equations

Consider
y = Ay

Replace y by Sy in the system, where S € GL(n, L(z)), we obtain
a new system for the new vy,

y = (571AS — 5715y



Consider

y = Ay
Replace y by Sy in the system, where S € GL(n, L(z)), we obtain
a new system for the new vy,

y = (ST1AS —571S)y.

Two n x n-systems with coefficient matrices A, B € M,(L(z)) are
called equivalent over L(z) if there exists S € GL(n, L(z)) such
that B = S71AS — §°19.
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Consider

y' = Ay
Replace y by Sy in the system, where S € GL(n, L(z)), we obtain
a new system for the new vy,

y = (ST1AS —571S)y.

Two n x n-systems with coefficient matrices A, B € M,(L(z)) are
called equivalent over L(z) if there exists S € GL(n, L(z)) such
that B = S 1AS — 515"

Proposition

Any system of linear first order differential equations over L(z) is
equivalent over L(z) to a system which comes from a differential
equation.

T



Cyclic vector Lemma

To go from system to equation consider
F(z) = Piyr+ -+ Puyn
where P; € C(z).



To go from system to equation consider
F(z) = Piyr+ -+ Puyn

where P; € C(z). By differentiation and use of the first order
system we find that for every m there exist Pp, ; such that

F(m):Pm1y1+"'+PmnYn-

Y



To go from system to equation consider
F(z) = Puyi+ -+ Ppyn
where P; € C(z). By differentiation and use of the first order
system we find that for every m there exist Pp, ; such that
FO™ = Prays + -+ + Prann.

Let
Poi -+ Pon

A(z) = : :
Pn—l,l te Pn—l,n

If A(z) # 0 the matrix (Pj;) gives us an equivalence from the
system to the equation satisfied by F.

Y



To go from system to equation consider
F(z) = Puyi+ -+ Ppyn
where P; € C(z). By differentiation and use of the first order
system we find that for every m there exist Py, ; such that
FO™ = Prays + -+ + Prann.

Let
Poi -+ Pon

A(z) = : :
Pn—l,l te Pn—l,n

If A(z) # 0 the matrix (Pj;) gives us an equivalence from the
system to the equation satisfied by F.

Cyclic vector Lemma
There exist P1,..., P, such that A(z) # 0.
E- and G-functions 16 / 24



Siegel-Shidlovskii, 1929, 1956

Let (fi(z),...,fa(z) be a solution vector of a system of first order
equations of the form

and suppose that the fi(z) are E-functions. Let T(z) be the
common denominator of the entries of A(z). Let « € Q and
suppose a T () # 0. Then

degtrg(fi(a), fo(a), ..., fa(a)) = degtre(,)(f(2), f2(2), - - -, fa(2))
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Siegel-Shidlovskii, 1929, 1956

Let (fi(z),...,fa(z) be a solution vector of a system of first order
equations of the form

and suppose that the f;(z) are E-functions. Let T(z) be the
common denominator of the entries of A(z). Let o € Q and
suppose a T () # 0. Then

degtrg(fi(a), fo(a), ..., fa(a)) = degtre(,)(f(2), f2(2), - - -, fa(2))

In particular, if the fj(z) are algebraically independent over C(z)
then the values at z = « are algebraically independent over Q (or
@, which amounts to the same).

T



In the 1960's and 70's much energy has gone into showing
algebraic independence of (mainly hypergeometrical) E-functions.

Ty



In the 1960's and 70's much energy has gone into showing
algebraic independence of (mainly hypergeometrical) E-functions.
In the 1980's the tool of differential galois theory was used, which
clarified very much of the earlier work.
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In the 1960's and 70's much energy has gone into showing
algebraic independence of (mainly hypergeometrical) E-functions.
In the 1980's the tool of differential galois theory was used, which
clarified very much of the earlier work.

We display a non-trivial example of E-functions.

Consider
9=3 (e
0

Then f(z*) is an E-function satisfying a differential equation of
order 5. The differential galois group is SO(5,C). Dimension of its
orbits is 4 and we have a quadratic form Q with coefficients in
Q(z) such that

Q(f, f,, f‘//’ f‘///’ f””) — 1

Ty



Example of a relation between E-functions

Explicitly,
[ee)
(20 P
(291
Z (K2(6R)! 916z)
0
satisfies
F'OF = (2)
where F = (f(z), Df(z), D*f(z), D3f(z), D*f(z))" with D = z %
and
z 324z 18z 198z —486z 324z
-8z ¥ Z 28 18
2= 198z 2 -120 297 198

—486z —28 297 729 486
324z 18 —-198 486 324



Principle of Siegel's method

Suppose we have one or more independent linear relations between
fi(a), ..., fy(a) with coefficients in Q. Say

Birfi(a) + Binfo(a) + -+ + Binfa(a) =0

with i=1,...,m.



Suppose we have one or more independent linear relations between
fi(a), ..., fa(e) with coefficients in Q. Say

ﬂil fl(a) + 5;27(2(0&) +---+ Bl’nfn(a) =0

withi=1,....,m.
Let K be the number field generated by «, the coefficients of the ;
and the 3;;.
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Suppose we have one or more independent linear relations between
fi(a), ..., fa(e) with coefficients in Q. Say

Birfi(a) + Binfo(a) + -+ + Binfa(a) =0

with i =1,...,m.
Let K be the number field generated by «, the coefficients of the f;
and the 3;;.

Suppose we have n — m additional inequalities of the form
|B,'1f1(a) + B,’2f2(a) + -+ Binfn(a)| <0

with i = m+1,...,n, Bjj are algebraic integers in K and such
that n x n matrix with the rows 8;1,..., 8, and B;j1,...,Bj, is
non-singular.
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Suppose we have one or more independent linear relations between
fi(a), ..., fa(e) with coefficients in Q. Say

Birfi(a) + Binfo(a) + -+ + Binfa(a) =0

with i=1,... . m
Let K be the number field generated by «, the coefficients of the f;
and the 3;;.

Suppose we have n — m additional inequalities of the form
|B,’1f1(a) + B,’zfz(a) + -+ Binfn(a)| <0

with i = m+1,...,n, Bjj are algebraic integers in K and such
that n x n matrix with the rows 8;1,..., 8, and B;j1,...,Bj, is
non-singular.

Then there exists a constant ¢ > 0, independent of the choice of
the Bjj, such that 1 < céBd(”_m)_l, where d is the degree of K
and B the maximum of the @

Ty



The arithmetic inequality

So we have
Bin .. Pin fl(_a) 0
ﬂml ce. ﬂmn 0
Bmt11 --- Bmyin : Omt1 19
B .. Ban f.(a) On



So we have
P11

Bt

Bm+t11

Bn1

ﬁln

Bonn

Berl,n

Bnn

fi(e) 0
| o

6m+1
f() On

Using Cramer’s rule Afj(a) = A, j=1,...,n

where A is the coefficient determinant and A; is the determinant

’5J| < 0.

after replacing the j-th column with the right hand column.

Suppose fi(«) # 0.

Then |A| - |fi(a)] = |Ar] < B

Furthermore, |A| > Wf(dfl) > (n!Bn—m)—(d—l)_

E- and G-functions
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So we have

611 ﬁln
ﬁml .. /an
Bm+1,1 cee Berl,n
Bn1 Bnn

fi(e) 0
| o

6m+1
f() On

Using Cramer’s rule Afj(a) = A, j=1,...,n

where A is the coefficient determinant and A; is the determinant

’5J| < 0.

after replacing the j-th column with the right hand column.

Suppose fi(«) # 0.

Then |A| - |fi(a)] = |Ar] < B

Furthermore, |A| > Wf(dfl) > (n!Bn—m)—(d—l)_

Our estimate follows.

E- and G-functions

21/ 24



Fix N sufficiently large and choose ¢ > 1. Using linear algebra and
Siegel's Lemma, construct polynomials P, ..., P, € K[z] of
degrees < N such that

Pifi+ Pafo + -+ + Pyfy = O(zM0"79),

Ty



Fix N sufficiently large and choose ¢ > 1. Using linear algebra and
Siegel's Lemma, construct polynomials P, ..., P, € K[z] of
degrees < N such that

Pifi + Pofo + - - + Pofy = O(2V(=9)).
Rewrite in vector notation

P.-f=0(zV"9).
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Fix N sufficiently large and choose ¢ > 1. Using linear algebra and
Siegel's Lemma, construct polynomials P, ..., P, € K[z] of
degrees < N such that

Pifi + Pofo + - - + Pofy = O(2V(=9)).
Rewrite in vector notation
P.-f=0(zV"9).

Differentiate,
P - f+P-Af = O(ZN(—91),
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Fix N sufficiently large and choose ¢ > 1. Using linear algebra and
Siegel's Lemma, construct polynomials P, ..., P, € K[z] of
degrees < N such that

Pifi + Pofo + - - + Pofy = O(2V(=9)).
Rewrite in vector notation
P.-f=0(zV"9).

Differentiate,
P - f+P-Af = O(ZN(—91),

Denote derivation by D, then we get

((D + AHP) - f = O(N(=9=1y,
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Fix N sufficiently large and choose ¢ > 1. Using linear algebra and
Siegel's Lemma, construct polynomials P, ..., P, € K[z] of
degrees < N such that

Pifi 4+ Pafy + - - -+ Pof, = O(2N("=9).
Rewrite in vector notation
P.-f=0(zV"9).

Differentiate,

P - f+P-Af = O(ZN(—91),
Denote derivation by D, then we get

((D + AHP) - f = O(N(=9=1y,

The coefficients of new polynomial relation are then given by
T(z)(D + AY)P.
E- and G-functions 22 / 24



We need n independent approximations and hope that they can be
found among

P, (D+ AP, (D+AY?P ..., (D + A")"!P.

Denote the determinant of the n x n-matrix formed by these
vectors by A(z).
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We need n independent approximations and hope that they can be
found among

P, (D+ AP, (D+AY?P ..., (D + A")"!P.

Denote the determinant of the n x n-matrix formed by these
vectors by A(z).
We want A(z) # 0.
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We need n independent approximations and hope that they can be
found among

P, (D4 AYP, (D +AY)?P ..., (D+ AH"Ip.

Denote the determinant of the n x n-matrix formed by these
vectors by A(z).
We want A(z) # 0.

Shidlovskii's Lemma
Suppose € < 1. Then A(z) # 0.

Ty



Last skirmishes

We specialise the above approximations by setting z = « to obtain
the desired extra inequalities

|B;1f1(a) —+ -+ B,-,,f,,(oz)| <.



We specialise the above approximations by setting z = « to obtain
the desired extra inequalities

|Birfi(a) + - - - + Bjnfa(a)| < 6.

Proposition

There exists v > 0,independent of N or € such that the rank of the

vectors
((D+ A P)(a), r=0,1,...,Ne+~

is precisely n.

T



