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A general transcendence problem

Let f (z) ∈ Q[[z ]] be power series in z with coefficients in Q, with
positive radius of convergence ρ. We assume f (z) is not algebraic
over Q(z).

Question

Let α ∈ Q and suppose 0 < |α| < ρ. Is f (α) transcendental?
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A bizarre function

There exist non-algebraic f ∈ Q[[z ]] with ρ = ∞ such that

f (α) ∈ Q for all α ∈ Q

Idea of construction:
Enumerate the elements of Z[z ] by P1,P2, . . . and consider

f (z) = 1 +
∞∑

k=1

ckzkP1(z) · · ·Pk(z)

where ck ∈ Q are chosen such that the resulting f has infinite
radius of convergence.
Question: Do there exist f ∈ Z[[z ]] with positive radius of
converge ρ such that f (α) ∈ Q for all α ∈ Q and |α| < ρ?
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Lindemann-Weierstrass theorem

Around 1882 F.Lindemann proved the transcendence of π. In fact
his method yielded more.

Lindemann-Weierstrass

Let α1, α2, . . . , αn be distinct algebraic numbers. Then

eα1 , eα2 , . . . , eαn

are linearly independent over Q.

Application: π is transcendental.
Proof: Suppose π were algebraic. Take α1 = 0, α2 = πi . Then
Lindemann-Weierstrass implies that 1, eπi are Q-linear
independent, contradicting eπi = −1.
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Some notations

For any element α ∈ Q we define |α| to be maximum of the
absolute values of all conjugates of α. We call it the size of α.

By den(α) we denote the denominator of α, the smallest positive
integer d such that dα is an algebraic integer.
For any set of α1, . . . , αr we denote by den(α1, . . . , αr ) the lowest
common multiple of the denominators of α1, . . . , αr .
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E-function definition

Definition

An entire function f (z) given by a powerseries

∞∑
k=0

ak

k!
zk

with ak ∈ Q for all k, is called an E-function if

1 f (z) satisfies a linear differential equation with coefficients in
Q(z).

2 Both |ak | and the common denominator den(a0, . . . , ak) are
bounded by an exponential bound of the form C k , where
C > 0 depends only on f .

Remark: For any E-function there exists a finite extension K of Q
such that ak ∈ K for all k. In most cases of interest: K = Q.
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More general?

Siegel used instead of the exponential bound C k in condition 2)
the (seemingly) less restrictive cε(k!)ε for every ε > 0. However, it
is conjectured that the bound (k!)ε together with the condition of
a linear differential equation is enough to garantee that we have
the exponential bound C k .

Therefore we shall stick to our definition above.
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E-function examples

exp(az) =
∞∑

k=0

akzk

k!
, a ∈ Q∗

J0(−z2) =
∞∑

k=0

z2k

k!k!
=

∑
k≥0

(
2n

n

)
z2k

(2k)!

The corresponding differential equations read

y ′ − ay = 0

zy ′′ + y ′ − 4zy = 0
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Hypergeometric example

A very general example, the confluent hypergeometric series,

pFq

(
α1, . . . , αp

β1, . . . , βq

∣∣∣∣ zq+1−p

)
=

∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βq)kk!

z(q+1−p)k

where q ≥ p (confluence) and αi , βj ∈ Q for all i , j .
(x)n is the Pochhammer symbol defined by x(x + 1) · · · (x + n− 1).

pFq satisfies a linear differential equation of order q + 1.
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Differential ring structure

The E-functions form a so-called differential ring. More precisely,

Proposition

Let f (z), g(z) be E-functions. Then the following functions are
again E-functions

f ′(z)

f (z) + g(z)

f (z)g(z)

Let L be any subfield of C. Let f ∈ L[[z ]]. Then the following two
statements are equivalent

1 f satisfies a linear differential equation with coefficients in
L(z).

2 L(z)-vectorspace spanned by f and its derivatives is finite
dimensional.
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Product of E-functions

We show that if f , g are E-functions then so is fg . There exists a
number field K so that f , g ∈ K [[z ]].

Differential equation The K (z)-vectorspace spanned by fg and
its derivatives is contained in the space spanned by f (r)g (s). The
latter space is finite-dimensional, hence also the former space.
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Products of E-functions, cont’d

We show that if f , g are E-functions then so is fg . There exists a
number field K so that f , g ∈ K [[z ]].
Coefficient estimates Write

f =
∑
k≥0

fk
zk

k!
, g =

∑
k≥0

gk
zk

k!
, fg =

∑
k≥0

hk
zk

k!
.

Then

hk =
k∑

r+s=k

(
k

r

)
frgs .

Notice:

1 den(hk) divides den(f0, . . . , fk)den(g0, . . . , gk)

2

|hk | ≤ 2k( max
0≤r≤k

|fr |)( max
0≤s≤k

|gs |).

Lecture 1 E- and G-functions 12 / 24



Products of E-functions, cont’d

We show that if f , g are E-functions then so is fg . There exists a
number field K so that f , g ∈ K [[z ]].
Coefficient estimates Write

f =
∑
k≥0

fk
zk

k!
, g =

∑
k≥0

gk
zk

k!
, fg =

∑
k≥0

hk
zk

k!
.

Then

hk =
k∑

r+s=k

(
k

r

)
frgs .

Notice:

1 den(hk) divides den(f0, . . . , fk)den(g0, . . . , gk)

2

|hk | ≤ 2k( max
0≤r≤k

|fr |)( max
0≤s≤k

|gs |).

Lecture 1 E- and G-functions 12 / 24



First order systems

Let L be any subfield of C. An n × n-system of first order linear
differential equations is given by

d

dz


y1

y2
...
yn

 =


y ′1
y ′2
...
y ′n

 =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann




y1

y2
...
yn


where Aij ∈ L(z) for all i , j .

We abbreviate by
y′ = Ay

where A is the n × n-matrix with entries Aij .
Let T (z)be the common denominator of the Aij . The zeros of
T (z) are called the singularities of the system.
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From equations to systems

Consider the linear n-th order differential equation

y (n) + p1y
(n−1) + p2y

(n−2) + · · ·+ pn−1y
′ + pny = 0, pi ∈ L(z)

Put
y1 = y , y2 = y ′, . . . , yn = y (n−1)

Note that
y ′1 = y2, y ′2 = y3, . . . , y ′n−1 = yn.

Finally,
y ′n = −p1yn − p2yn−1 − . . .− pny1.

Rewrite as

d

dz


y1

y2
...
yn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−pn −pn−1 −pn−2 · · · −p1




y1

y2
...
yn


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From systems to equations

Consider
y′ = Ay

Replace y by Sy in the system, where S ∈ GL(n, L(z)), we obtain
a new system for the new y,

y′ = (S−1AS − S−1S ′)y.

Two n × n-systems with coefficient matrices A,B ∈ Mn(L(z)) are
called equivalent over L(z) if there exists S ∈ GL(n, L(z)) such
that B = S−1AS − S−1S ′.

Proposition

Any system of linear first order differential equations over L(z) is
equivalent over L(z) to a system which comes from a differential
equation.
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Cyclic vector Lemma

To go from system to equation consider

F (z) = P1y1 + · · ·+ Pnyn

where Pi ∈ C(z).

By differentiation and use of the first order
system we find that for every m there exist Pm,i such that

F (m) = Pm1y1 + · · ·+ Pmnyn.

Let

∆(z) =

∣∣∣∣∣∣∣
P01 · · · P0n
...

...
Pn−1,1 · · · Pn−1,n

∣∣∣∣∣∣∣
If ∆(z) 6≡ 0 the matrix (Pij) gives us an equivalence from the
system to the equation satisfied by F .

Cyclic vector Lemma

There exist P1, . . . ,Pn such that ∆(z) 6= 0.
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...
Pn−1,1 · · · Pn−1,n

∣∣∣∣∣∣∣
If ∆(z) 6≡ 0 the matrix (Pij) gives us an equivalence from the
system to the equation satisfied by F .

Cyclic vector Lemma

There exist P1, . . . ,Pn such that ∆(z) 6= 0.
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Siegel-Shidlovskii theorem

Siegel-Shidlovskii, 1929, 1956

Let (f1(z), . . . , fn(z) be a solution vector of a system of first order
equations of the form

y′(z) = A(z)y(z)

and suppose that the fi (z) are E-functions. Let T (z) be the
common denominator of the entries of A(z). Let α ∈ Q and
suppose αT (α) 6= 0. Then

degtrQ(f1(α), f2(α), . . . , fn(α)) = degtrC(z)(f1(z), f2(z), . . . , fn(z))

In particular, if the fi (z) are algebraically independent over C(z)
then the values at z = α are algebraically independent over Q (or
Q, which amounts to the same).
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Algebraic relations between E-function

In the 1960’s and 70’s much energy has gone into showing
algebraic independence of (mainly hypergeometrical) E-functions.

In the 1980’s the tool of differential galois theory was used, which
clarified very much of the earlier work.
We display a non-trivial example of E-functions.
Consider

f (z) =
∞∑

k=0

((2k)!)2

(k!)2(6k)!
zk .

Then f (z4) is an E -function satisfying a differential equation of
order 5. The differential galois group is SO(5, C). Dimension of its
orbits is 4 and we have a quadratic form Q with coefficients in
Q(z) such that

Q(f , f ′, f ′′, f ′′′, f ′′′′) = 1
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Example of a relation between E-functions

Explicitly,

f (z) =
∞∑

k=0

((2k)!)2

(k!)2(6k)!
(2916z)k

satisfies
FtQF = (z)

where F = (f (z),Df (z),D2f (z),D3f (z),D4f (z))t with D = z d
dz

and

Q =


z − 324z2 −18z 198z −486z 324z
−18z −10

9
23
2 −28 18

198z 23
2 −120 297 −198

−486z −28 297 −729 486
324z 18 −198 486 −324


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Principle of Siegel’s method

Suppose we have one or more independent linear relations between
f1(α), . . . , fn(α) with coefficients in Q. Say

βi1f1(α) + βi2f2(α) + · · ·+ βinfn(α) = 0

with i = 1, . . . ,m.

Let K be the number field generated by α, the coefficients of the fi
and the βij .
Suppose we have n −m additional inequalities of the form

|Bi1f1(α) + Bi2f2(α) + · · ·+ Binfn(α)| < δ

with i = m + 1, . . . , n, Bij are algebraic integers in K and such
that n × n matrix with the rows βi1, . . . , βin and Bi1, . . . ,Bin is
non-singular.
Then there exists a constant c > 0, independent of the choice of
the Bij , such that 1 < cδBd(n−m)−1, where d is the degree of K

and B the maximum of the |Bij |.
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The arithmetic inequality

So we have

β11 . . . β1n
...

...
βm1 . . . βmn

Bm+1,1 . . . Bm+1,n
...

...
Bn1 . . . Bnn





f1(α)
...
...
...
...

fn(α)


=



0
...
0

δm+1
...
δn


|δj | < δ.

Using Cramer’s rule ∆fj(α) = ∆j , j = 1, . . . , n
where ∆ is the coefficient determinant and ∆j is the determinant
after replacing the j-th column with the right hand column.
Suppose f1(α) 6= 0.
Then |∆| · |f1(α)| = |∆1| ≤ c1B

n−m−1δ

Furthermore, |∆| ≥ |∆|−(d−1) ≥ (n!Bn−m)−(d−1).
Our estimate follows.
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Siegel construction

Fix N sufficiently large and choose ε > 1. Using linear algebra and
Siegel’s Lemma, construct polynomials P1, . . . ,Pn ∈ K [z ] of
degrees ≤ N such that

P1f1 + P2f2 + · · ·+ Pnfn = O(zN(n−ε)).

Rewrite in vector notation

P · f = O(zN(n−ε)).

Differentiate,
P′ · f + P · Af = O(zN(n−ε)−1).

Denote derivation by D, then we get

((D + At)P) · f = O(zN(n−ε)−1).

The coefficients of new polynomial relation are then given by
T (z)(D + At)P.
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Shidlovskii’s idea

We need n independent approximations and hope that they can be
found among

P, (D + At)P, (D + At)2P , . . . , (D + At)n−1P.

Denote the determinant of the n × n-matrix formed by these
vectors by ∆(z).

We want ∆(z) 6≡ 0.

Shidlovskii’s Lemma

Suppose ε < 1. Then ∆(z) 6≡ 0.
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Last skirmishes

We specialise the above approximations by setting z = α to obtain
the desired extra inequalities

|Bi1f1(α) + · · ·+ Binfn(α)| < δ.

Proposition

There exists γ > 0,independent of N or ε such that the rank of the
vectors

((D + At)rP)(α), r = 0, 1, . . . ,Nε + γ

is precisely n.
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