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E-function definition

Definition

An entire function f (z) given by a powerseries

∞∑
k=0

ak

k!
zk

with ak ∈ Q for all k, is called an E-function if

1 f (z) satisfies a linear differential equation with coefficients in
Q(z).

2 Both |ak | and the common denominator den(a0, . . . , ak) are
bounded by an exponential bound of the form C k , where
C > 0 depends only on f .
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Siegel-Shidlovskii theorem

Siegel-Shidlovskii, 1929, 1956

Let (f1(z), . . . , fn(z) be a solution vector of a system of first order
equations of the form

y′(z) = A(z)y(z)

and suppose that the fi (z) are E-functions. Let T (z) be the
common denominator of the entries of A(z). Let α ∈ Q and
suppose αT (α) 6= 0. Then

degtrQ(f1(α), f2(α), . . . , fn(α)) = degtrC(z)(f1(z), f2(z), . . . , fn(z))
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Generalising Lindemann-Weierstrass

Recall

Lindemann-Weierstrass

Let α1, α2, . . . , αn be distinct algebraic numbers. Then

eα1 , eα2 , . . . , eαn

are linearly independent over Q.

Exercise: Show that eα1z , eα2z , . . . , eαnz are linearly independent
over C(z).

Question

Suppose we have C(z)-linear independent E-functions f1, f2, . . . , fn
and α a non-zero algebraic number. Can it be true that the values
f1(α), f2(α), . . . , fn(α) are Q-linear independent?

Answer: not always
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An exceptional set

Suppose f1, f2 are C(z)-linear independent E-functions.

Consider g1 = Af1 + Bf2 and g2 = Cf1 + Df2 where
A,B,C ,D ∈ Q[z ] and ∆(z) := AD − BC 6≡ 0.

Then g1, g2 are C(z)-linearly independent E-functions.

But for any β with ∆(β) = 0 the values g1(β), g2(β) are
Q-linear dependent.

Nesterenko-Shidlovskii,1996

Let f1, f2, . . . , fn be an E-function solution of a first order system of
linear differential equations. Then there exists a finite set S ⊂ Q
such that for any algebraic number α not in S the values
f1(α), f2(α), . . . , fn(α) are Q-linear independent.

Proof uses the Siegel-Shidlovskii method.
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A question by S.Lang

Theorem, FB 2004

Let f1(z), . . . , fn(z) be E -functions which satisfy a system of n first
order equations. Let α ∈ Q and suppose it is not zero or a
singularity of the system. Then any Q-linear relation between the
numbers fi (α) are specialisation of a Q(z)-linear relation between
the fi (z) at z = α.

Corollary

Let f1(z), . . . , fn(z) be E -functions which satisfy a system of n first
order equations. Suppose that f1(z), . . . , fn(z) are Q(z)-linear
independent. Then f1(α), . . . , fn(α) are Q-linear independent.
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Relations result from specialisation

Corollary

Let f1(z), . . . , fn(z) be E -functions which satisfy a system of n first
order equations. Let α ∈ Q and suppose it is not zero or a
singularity of the system. Let M be a positive integer. Then any
Q-linear relation between monomials f1(α)m1 · · · fn(α)mn of degree
≤ M is specialisation of a Q(z)-linear relation between monomials
f1(z)m1 · · · fn(z)mn of degree ≤ M at z = α.

Proof The vector consisting of all monomials f1(z)m1 · · · fn(z)mn of
degree ≤ M is a solution vector of a large K ×K -system consisting
of E-functions with K =

(M+n
n

)
. We apply our Theorem to this

vector.
The proof of the theorem is based on a remarkable theorem by
Y.André from 2000.
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Remarks on linear differential equations

Consider a linear differential equation

qny
(n) + qn−1y

(n−1) + · · ·+ q1y
′ + q0y = 0

where gi (z) ∈ C[z ] for all i .

The zeros of qn(z) are called the singularities of the equation, all
other points are called non-singular.

Theorem, Cauchy

Suppose a ∈ C is a non-singular point. Then the solutions of the
equation in C[[z − a]] form an n-dimensional C-vector space.
Furthermore there is a one to one correspondence isomorphism of
this space with Cn given by

y(z) 7→ (y(a), y ′(a), y ′′(a), . . . , y (n−1)(a)).

Finally, the solutions in C[[z − a]] all have positive radius of
convergence.
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Apparent singular points

It may happen that there exists a basis of solutions in
C[[z − a]] but a is a singularity. In that case we call a an
apparent singularity.

For example, if all solutions around z = a have a zero a then a
is an apparent singularity.

This is because y 7→ (y(a), y ′(a), . . . , y (n−1)(a)) is not
bijective any more.
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Some more remarks

We abbreviate our equation

qny
(n) + qn−1y

(n−1) + · · ·+ q1y
′ + q0y = 0

with qi (z) ∈ C(z) by
Ly = 0

where L ∈ C(z)[d/dz ] denotes the corresponding linear differential
operator.

Let f be a function which satisfies a linear differential equation
with coefficients in C(z). A minimal differential equation for f an
equation of smallest possible order satisfied by f .

Proposition

Let Ly = 0 be a mimimal differential equation for f . Then for any
differential equation L1y = 0 satisfied by f there exists a
differential operator L2 such that L1 = L2 ◦ L.
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A miraculous theorem

Theorem, Y.André 2000

Let f (z) be an E-function. Then f (z) satisfies a differential
equation of the form

zmy (m) +
m−1∑
k=0

qk(z)y (k) = 0

where qk(z) ∈ Q[z ] for all k.

The equation from André’s theorem need not be the minimal
equation of f (z).

For example, the function (z − 1)ez is an E-function, and its
minimal differential equation reads (z − 1)f ′ = zf . So we
have a singularity at z = 1. The equation refered to in
André’s theorem might be f ′′ − 2f ′ + f = 0.
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A consequence

Corollary, Y.André 2000

Let f be an E-function with rational coefficients. Suppose that
f (1) = 0. Then the minimal differential equation of f has an
apparent singularity at z = 1.

The simplest example is again f = (z − 1)ez , an E-function which
vanishes at z = 1. Its minimal differential equation is
(z − 1)f ′ = zf .
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Proof of André’s corollary

Proof. Consider f (z)/(1− z). We will show that it is an
E-function again. It is certainly an entire analytic function.

Suppose that

f (z) =
∑
r≥0

fr
r !

z r , fr ∈ Q

Then the power series of f (z)/(1− z) reads

f (z)

1− z
=

∑
r≥0

gr

r !
z r

where

gr = r !
r∑

k=0

fk
k!

.

Suppose that the common denominator of f0, . . . , fr and the sizes
|fr | are bounded by C r for some C > 0. Then clearly the common
denominator of g0, . . . , gr are again bounded by C r .

Lecture 2 E- and G-functions 13 / 17



Proof of André’s corollary
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End of proof

Recall

gr = r !
r∑

k=0

fk
k!

.

To estimate the size of |gr | we use the fact that
0 = f (1) =

∑
k≥0 fk/k!. More precisely,

|gr | =

∣∣∣∣∣−r !
∑
k>r

fk/k!

∣∣∣∣∣
≤

∑
k>r

|fk |/(k − r)!

≤
∑
k>r

C k/(k − r)! < C reC

So |gr | is exponentially bounded in r . Hence f (z)/(1− z) is an
E-function.
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Final touch

Notice that this argument only works if f (z) is an E-function
with coefficients in Q.

By Andre’s theorem f (z)/(1− z) satisfies a differential
equation without singularity at z = 1.

Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

The solutions of the minimal equation of f (z) can be found
by multiplying the elements from V by z − 1.

This means that the original differential equation for f (z) has
a full space of analytic solutions all vanishing at z = 1.

So z = 1 is apparent singularity.

Lecture 2 E- and G-functions 15 / 17



Final touch

Notice that this argument only works if f (z) is an E-function
with coefficients in Q.

By Andre’s theorem f (z)/(1− z) satisfies a differential
equation without singularity at z = 1.

Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

The solutions of the minimal equation of f (z) can be found
by multiplying the elements from V by z − 1.

This means that the original differential equation for f (z) has
a full space of analytic solutions all vanishing at z = 1.

So z = 1 is apparent singularity.

Lecture 2 E- and G-functions 15 / 17



Final touch

Notice that this argument only works if f (z) is an E-function
with coefficients in Q.

By Andre’s theorem f (z)/(1− z) satisfies a differential
equation without singularity at z = 1.

Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

The solutions of the minimal equation of f (z) can be found
by multiplying the elements from V by z − 1.

This means that the original differential equation for f (z) has
a full space of analytic solutions all vanishing at z = 1.

So z = 1 is apparent singularity.

Lecture 2 E- and G-functions 15 / 17



Final touch

Notice that this argument only works if f (z) is an E-function
with coefficients in Q.

By Andre’s theorem f (z)/(1− z) satisfies a differential
equation without singularity at z = 1.

Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

The solutions of the minimal equation of f (z) can be found
by multiplying the elements from V by z − 1.

This means that the original differential equation for f (z) has
a full space of analytic solutions all vanishing at z = 1.

So z = 1 is apparent singularity.

Lecture 2 E- and G-functions 15 / 17



Final touch

Notice that this argument only works if f (z) is an E-function
with coefficients in Q.

By Andre’s theorem f (z)/(1− z) satisfies a differential
equation without singularity at z = 1.

Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

The solutions of the minimal equation of f (z) can be found
by multiplying the elements from V by z − 1.

This means that the original differential equation for f (z) has
a full space of analytic solutions all vanishing at z = 1.

So z = 1 is apparent singularity.

Lecture 2 E- and G-functions 15 / 17



Final touch

Notice that this argument only works if f (z) is an E-function
with coefficients in Q.

By Andre’s theorem f (z)/(1− z) satisfies a differential
equation without singularity at z = 1.

Hence its minimal differential equation has a full solution
space V of analytic solutions at z = 1.

The solutions of the minimal equation of f (z) can be found
by multiplying the elements from V by z − 1.

This means that the original differential equation for f (z) has
a full space of analytic solutions all vanishing at z = 1.

So z = 1 is apparent singularity.

Lecture 2 E- and G-functions 15 / 17



Transcendence of π

We present André’s alternative proof for the transcendence of π.

Suppose α := 2πi ∈ Q. Consider the function

F =
∏

conjugates of alpha

(eβz − 1).

This is an E-function with coefficients in Q and F (1) = 0.

Alternatively, F (z) is linear combination of terms of the form
eλjz , j = 1, . . . ,m.

The minimal differential equation for F (z) reads

(D − λ1)(D − λ2) · · · (D − λm)F = 0

where D denotes differentiation.

This equation has constant coefficients and no singularities.

Contradiction with F (1) = 0 and André Corollary
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Generalising André’s corollary

Using a combination of André’s theorem and some differential
galois theory one can prove the following result.

Theorem, FB, 2004

Let f (z) be an E -function and suppose that f (α) = 0 for some
α ∈ Q∗

. Then α is an apparent singularity of the minimal
differential equation satisfied by f .

Lecture 2 E- and G-functions 17 / 17



Another proof of Lindemann-Weierstrass

Let α1, . . . , αn be distinct algebraic numbers. Suppose there exist
b1, . . . , bn not all zero, such that

b1e
α1 + · · ·+ bne

αn = 0.

Let us assume bi 6= 0 for all i .

Define
F (z) = b1e

α1z + · · ·+ bne
αnz .

Then F (z) is an E-function with F (1) = 0. Hence the minimal
differential equation for F (z) has a singular point at z = 1.

The minimal equation is given by

(D − α1)(D − α2) · · · (D − αn)F = 0

which has no singularities.

We have a contradiction.
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In general

Suppose f1, . . . , fn form a solution of an n × n-system consisting of
E-functions. Suppose that they are C(z)-linear independent. Let α
be a non-zero algebraic number and not a singularity of the system.
Suppose that there exist b1, . . . , bn ∈ Q, not all zero, such that

b1f1(α) + · · ·+ bnfn(α) = 0.

How to contradict this?
Solution: Construct polynomials P1, . . . ,Pn with the
constraints that Pi (α) = bi for all i and such that the minimal
differential equation for the function

F (z) = P1(z)f1(z) + · · ·+ Pn(z)fn(z)

does not have a singular point at z = α.
Then F (z) is an E-function vanishing at z = α. Therefore its
minimal equation should have a singular point at α. But it
doesn’t by construction.

Lecture 2 E- and G-functions 19 / 17



In general

Suppose f1, . . . , fn form a solution of an n × n-system consisting of
E-functions. Suppose that they are C(z)-linear independent. Let α
be a non-zero algebraic number and not a singularity of the system.
Suppose that there exist b1, . . . , bn ∈ Q, not all zero, such that

b1f1(α) + · · ·+ bnfn(α) = 0.

How to contradict this?

Solution: Construct polynomials P1, . . . ,Pn with the
constraints that Pi (α) = bi for all i and such that the minimal
differential equation for the function

F (z) = P1(z)f1(z) + · · ·+ Pn(z)fn(z)

does not have a singular point at z = α.
Then F (z) is an E-function vanishing at z = α. Therefore its
minimal equation should have a singular point at α. But it
doesn’t by construction.

Lecture 2 E- and G-functions 19 / 17



In general

Suppose f1, . . . , fn form a solution of an n × n-system consisting of
E-functions. Suppose that they are C(z)-linear independent. Let α
be a non-zero algebraic number and not a singularity of the system.
Suppose that there exist b1, . . . , bn ∈ Q, not all zero, such that

b1f1(α) + · · ·+ bnfn(α) = 0.

How to contradict this?
Solution: Construct polynomials P1, . . . ,Pn with the
constraints that Pi (α) = bi for all i and such that the minimal
differential equation for the function

F (z) = P1(z)f1(z) + · · ·+ Pn(z)fn(z)

does not have a singular point at z = α.

Then F (z) is an E-function vanishing at z = α. Therefore its
minimal equation should have a singular point at α. But it
doesn’t by construction.

Lecture 2 E- and G-functions 19 / 17



In general

Suppose f1, . . . , fn form a solution of an n × n-system consisting of
E-functions. Suppose that they are C(z)-linear independent. Let α
be a non-zero algebraic number and not a singularity of the system.
Suppose that there exist b1, . . . , bn ∈ Q, not all zero, such that

b1f1(α) + · · ·+ bnfn(α) = 0.

How to contradict this?
Solution: Construct polynomials P1, . . . ,Pn with the
constraints that Pi (α) = bi for all i and such that the minimal
differential equation for the function

F (z) = P1(z)f1(z) + · · ·+ Pn(z)fn(z)

does not have a singular point at z = α.
Then F (z) is an E-function vanishing at z = α. Therefore its
minimal equation should have a singular point at α. But it
doesn’t by construction.

Lecture 2 E- and G-functions 19 / 17


