Lecture 3

Frits Beukers

Arithmetic of values of E- and G-function

G-functions, definition

Definition

An analytic function $f(z)$ given by a powerseries

$$
\sum_{k=0}^{\infty} a_{k} z^{k}
$$

with $a_{k} \in \overline{\mathbb{Q}}$ for all k and positive radius of convergence, is called a G-function if
(1) $f(z)$ satisfies a linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
(2) Both $\overline{\left|a_{k}\right|}$ and the common denominators $\operatorname{den}\left(a_{0}, \ldots, a_{k}\right)$ are bounded by an exponential bound of the form C^{k}, where $C>0$ depends only on f.

G-functions, examples

(1) $f(z)$ is algebraic over $\overline{\mathbb{Q}}(z)$ (Eisenstein theorem).

G-functions, examples

(1) $f(z)$ is algebraic over $\overline{\mathbb{Q}}(z)$ (Eisenstein theorem).
(2)

$$
f(z)={ }_{2} F_{1}\left(\left.\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} \right\rvert\, z\right)
$$

Gauss hypergeometric series with $\alpha, \beta, \gamma \in \mathbb{Q}$.

G-functions, examples

(1) $f(z)$ is algebraic over $\overline{\mathbb{Q}}(z)$ (Eisenstein theorem).
(2)

$$
f(z)={ }_{2} F_{1}\left(\left.\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} \right\rvert\, z\right)
$$

Gauss hypergeometric series with $\alpha, \beta, \gamma \in \mathbb{Q}$.
(3) $f(z)=L_{k}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{n}}$, the k-th polylogarithm.

G-functions, examples

(1) $f(z)$ is algebraic over $\overline{\mathbb{Q}}(z)$ (Eisenstein theorem).
(2)

$$
f(z)={ }_{2} F_{1}\left(\left.\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} \right\rvert\, z\right)
$$

Gauss hypergeometric series with $\alpha, \beta, \gamma \in \mathbb{Q}$.
(3) $f(z)=L_{k}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{k}}$, the k-th polylogarithm.
(9) $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ where
$a_{0}=1, a_{1}=3, a_{2}=19, a_{3}=147, \ldots$ are the Apéry numbers corresponding to Apéry's irrationality proof of $\zeta(2)$. They are determined by

$$
a_{k}=\sum_{r=0}^{k}\binom{k}{r}^{2}\binom{r+k}{r}
$$

and satisfy the recurrence relation

$$
(n+1)^{2} a_{n+1}=\left(11 n^{2}-11 n+3\right) a_{n}-n^{2} a_{n-1}
$$

Periods

Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_{z}. We assume everything defined over $\overline{\mathbb{Q}}$. Take a continuous family of suitable cycles γ_{z} and consider the integral

$$
w(z)=\int_{\gamma_{z}} \Omega_{z}
$$

Then, by a theorem of N.Katz $w(z)$ is a \mathbb{C}-linear combination of G-functions.

Periods

Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_{z}. We assume everything defined over $\overline{\mathbb{Q}}$. Take a continuous family of suitable cycles γ_{z} and consider the integral

$$
w(z)=\int_{\gamma_{z}} \Omega_{z}
$$

Then, by a theorem of N.Katz $w(z)$ is a \mathbb{C}-linear combination of G-functions.
Example: Euler integral for the hypergeometric function

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
1 / 5,4 / 5 \\
8 / 5
\end{array} \right\rvert\, z\right)=\frac{1}{B(4 / 5,4 / 5)} \int_{0}^{1} \frac{d x}{x^{1 / 5}(1-x)^{1 / 5}(1-z x)^{1 / 5}}
$$

This integral can be interpreted as a period (integral over a closed loop) of the differential form $d x / y$ on the algebraic curve $y^{5}=x(1-x)(1-z x)$.

Irrationality results

A typical result for G-functions,

Galochkin, 1972

Let $\left(f_{1}(z), \ldots, f_{n}(z)\right)$ be a solution vector of a system of first order equations of the form $\mathbf{y}^{\prime}=G \mathbf{y}$ and suppose that the $f_{i}(z)$ are G-functions with coefficients in \mathbb{Q}. Suppose also that $f_{1}(z), \ldots, f_{n}(z)$ are linearly independent over $\mathbb{Q}(z)$ and that the system satisfies the so-called Galochkin condition. Then there exists $C>0$ such that $f_{1}(a / b), \ldots, f_{n}(a / b)$ are \mathbb{Q}-linear independent whenever $a, b \in \mathbb{Z}$ and $b>C|a|^{n+1}>0$.

Wolfart's examples

Theorem, Wolfart 1988
The functions ${ }_{2} F_{1}\left(\left.\begin{array}{c}1 / 12,5 / 12 \\ 1 / 2\end{array} \right\rvert\, z\right)$ and ${ }_{2} F_{1}\left(\left.\begin{array}{c}1 / 12,7 / 12 \\ 2 / 3\end{array} \right\rvert\, z\right)$ assume algebraic values for a dense set of algebraic arguments in the unit disk.

Wolfart's examples

Theorem, Wolfart 1988
The functions ${ }_{2} F_{1}\left(\left.\begin{array}{c}1 / 12,5 / 12 \\ 1 / 2\end{array} \right\rvert\, z\right)$ and ${ }_{2} F_{1}\left(\left.\begin{array}{c}1 / 12,7 / 12 \\ 2 / 3\end{array} \right\rvert\, z\right)$ assume algebraic values for a dense set of algebraic arguments in the unit disk.

Theorem, Wolfart+FB, 1989

We have

$$
\begin{aligned}
{ }_{2} F_{1}\left(\frac{1}{12}, \frac{5}{12}, \frac{1}{2} \left\lvert\, \frac{1323}{1331}\right.\right) & =\frac{3}{4} \sqrt[4]{11} \\
{ }_{2} F_{1}\left(\frac{1}{12}, \frac{7}{12}, \frac{2}{3} \left\lvert\, \frac{64000}{64009}\right.\right) & =\frac{2}{3} \sqrt[6]{253}
\end{aligned}
$$

Galochkin condition

Start with the system

$$
y^{\prime}=G \mathbf{y}
$$

For $s=1,2,3, \ldots$ define the iterated $n \times n$-matrices G_{s} by

$$
\frac{1}{s!} \mathbf{y}^{(s)}=G_{s} \mathbf{y}
$$

Galochkin condition

Start with the system

$$
y^{\prime}=G \mathbf{y}
$$

For $s=1,2,3, \ldots$ define the iterated $n \times n$-matrices G_{s} by

$$
\frac{1}{s!} y^{(s)}=G_{s} \mathbf{y} .
$$

Let $T(z)$ be the common denominator of all entries of G. Then, for every s, the entries of $T(z)^{s} G_{s}$ are polynomials. Denote the least common denominator of all coefficients of all entries of $T(z)^{m} G_{m} / m!(m=1, \ldots, s)$ by q_{s}.

Definition

With notation as above, we say that the system $\mathbf{y}^{\prime}(z)=G(z) \mathbf{y}(z)$ satisfies Galochkin's condition if there exists $C>0$ such that $q_{s}<C^{s}$ for all $s \geq 1$.

Why Galochkin's condition?

Recall that in Siegel's method we construct polynomials P_{i} of degree $\leq N$ such that

$$
P_{1} f_{1}+\cdots+P_{n} f_{n}=O\left(z^{N(n-\epsilon)}\right)
$$

In vector notation $\mathbf{P} \cdot \mathbf{f}=O\left(z^{N(n-\epsilon)}\right)$. We also need the derivatives

$$
\frac{1}{m!}(\mathbf{P} \cdot \mathbf{f})^{(m)}=O\left(z^{N(n-\epsilon)-m}\right), \quad m=0,1, \ldots, N \epsilon+\gamma
$$

Why Galochkin's condition?

Recall that in Siegel's method we construct polynomials P_{i} of degree $\leq N$ such that

$$
P_{1} f_{1}+\cdots+P_{n} f_{n}=O\left(z^{N(n-\epsilon)}\right)
$$

In vector notation $\mathbf{P} \cdot \mathbf{f}=O\left(z^{N(n-\epsilon)}\right)$. We also need the derivatives

$$
\frac{1}{m!}(\mathbf{P} \cdot \mathbf{f})^{(m)}=O\left(z^{N(n-\epsilon)-m}\right), \quad m=0,1, \ldots, N \epsilon+\gamma
$$

Notice

$$
\begin{aligned}
\frac{1}{m!}(\mathbf{P} \cdot \mathbf{f})^{(m)} & =\sum_{s=0}^{m} \frac{1}{s!(m-s)!}(\mathbf{P})^{(m-s)} \cdot(\mathbf{f})^{(s)} \\
& =\sum_{s=0}^{m} \frac{1}{(m-s)!}(\mathbf{P})^{(m-s)} \cdot G_{s} \mathbf{f}
\end{aligned}
$$

Galochkin implies G-property

Lemma

Suppose we have an $n \times n$-system satisfying Galochkin. Then, at any nonsingular point a the system has a basis of solutions consisting of G-functions in $z-a$.

Galochkin implies G-property

Lemma

Suppose we have an $n \times n$-system satisfying Galochkin. Then, at any nonsingular point a the system has a basis of solutions consisting of G-functions in $z-a$.

Proof Put G_{0} equal to the $n \times n$ identity matrix and consider the matrix

$$
Y=\sum_{s \geq 0} \frac{1}{s!} G_{s}(a)(z-a)^{s}
$$

Galochkin implies G-property

Lemma

Suppose we have an $n \times n$-system satisfying Galochkin. Then, at any nonsingular point a the system has a basis of solutions consisting of G-functions in $z-a$.

Proof Put G_{0} equal to the $n \times n$ identity matrix and consider the matrix

$$
Y=\sum_{s \geq 0} \frac{1}{s!} G_{s}(a)(z-a)^{s}
$$

It satisfies

$$
Y^{\prime}=G Y
$$

hence its columns satisfy the linear differential system and since $\operatorname{det}(Y) \neq 0$ they form a basis. The G-function property of $G_{s}(a) / s$! follows directly from Galochkin's condition.

Chudnovsky's theorem

Chudnovsky, 1984

Let $\left(f_{1}(z), \ldots, f_{n}(z)\right)$ be a solution vector consisting of G-functions of a system of first order equations of the form $\mathbf{y}^{\prime}=G \mathbf{y}$. Suppose that $f_{1}(z), \ldots, f_{n}(z)$ are linearly independent over $\overline{\mathbb{Q}}(z)$. Then the system satisfies Galochkin's condition.

Chudnovsky's theorem

Chudnovsky, 1984

Let $\left(f_{1}(z), \ldots, f_{n}(z)\right)$ be a solution vector consisting of G-functions of a system of first order equations of the form $\mathbf{y}^{\prime}=G \mathbf{y}$. Suppose that $f_{1}(z), \ldots, f_{n}(z)$ are linearly independent over $\overline{\mathbb{Q}}(z)$. Then the system satisfies Galochkin's condition.

Idea of proof: Construct $Q, P_{1}, \ldots, P_{n} \in \overline{\mathbb{Q}}[z]$ of degrees $\leq N$ such that

$$
Q f_{i}-P_{i}=O\left(z^{N(1+1 / n-\epsilon)}\right) .
$$

In vector notation:

$$
Q \mathbf{f}-\mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)}\right)
$$

Chudnovsky's theorem

Chudnovsky, 1984

Let $\left(f_{1}(z), \ldots, f_{n}(z)\right)$ be a solution vector consisting of G-functions of a system of first order equations of the form $\mathbf{y}^{\prime}=G \mathbf{y}$. Suppose that $f_{1}(z), \ldots, f_{n}(z)$ are linearly independent over $\overline{\mathbb{Q}}(z)$. Then the system satisfies Galochkin's condition.

Idea of proof: Construct $Q, P_{1}, \ldots, P_{n} \in \overline{\mathbb{Q}}[z]$ of degrees $\leq N$ such that

$$
Q f_{i}-P_{i}=O\left(z^{N(1+1 / n-\epsilon)}\right)
$$

In vector notation:

$$
Q \mathbf{f}-\mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)}\right)
$$

Differentiate,

$$
Q^{\prime} \mathbf{f}+Q \mathbf{f}^{\prime}-\mathbf{P}^{\prime}=O\left(z^{N(1+1 / n-\epsilon)-1}\right)
$$

Proof sketch of Chudnovsky's theorem

Use $\mathbf{f}^{\prime}=G \mathbf{f}$ to get

$$
Q^{\prime} \mathbf{f}+Q G \mathbf{f}-D \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right)
$$

where $\mathbf{P}^{\prime}=D \mathbf{P}$.

Proof sketch of Chudnovsky's theorem

Use $\mathbf{f}^{\prime}=G \mathbf{f}$ to get

$$
Q^{\prime} \mathbf{f}+Q G \mathbf{f}-D \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right)
$$

where $\mathbf{P}^{\prime}=D \mathbf{P}$.
Substract G times the original form

$$
Q^{\prime} \mathbf{f}-(D-G) \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right) .
$$

Proof sketch of Chudnovsky's theorem

Use $\mathbf{f}^{\prime}=G \mathbf{f}$ to get

$$
Q^{\prime} \mathbf{f}+Q G \mathbf{f}-D \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right)
$$

where $\mathbf{P}^{\prime}=D \mathbf{P}$.
Substract G times the original form

$$
Q^{\prime} \mathbf{f}-(D-G) \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right) .
$$

Repeating the argument s times and divide by s !,

$$
\frac{1}{s!} Q^{(s)} \mathbf{f}-\frac{1}{s!}(D-G)^{s} \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-s}\right)
$$

Proof sketch of Chudnovsky's theorem

Use $\mathbf{f}^{\prime}=G \mathbf{f}$ to get

$$
Q^{\prime} \mathbf{f}+Q G \mathbf{f}-D \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right)
$$

where $\mathbf{P}^{\prime}=D \mathbf{P}$.
Substract G times the original form

$$
Q^{\prime} \mathbf{f}-(D-G) \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-1}\right) .
$$

Repeating the argument s times and divide by s !,

$$
\frac{1}{s!} Q^{(s)} \mathbf{f}-\frac{1}{s!}(D-G)^{s} \mathbf{P}=O\left(z^{N(1+1 / n-\epsilon)-s}\right)
$$

Lemma

We have for any vector $\mathbf{P} \in \overline{\mathbb{Q}}(z)^{n}$,

$$
G_{s} \mathbf{P}=\sum_{m=0}^{s} \frac{(-1)^{m}}{(s-m)!m!} D^{s-m}(D-G)^{m} \mathbf{P}
$$

Galochkin's condition for equations

Consider the differential

$$
T(z) y^{(n)}=Q_{n-1}(z) y^{(n-1)}+\cdots+Q_{1}(z) y^{\prime}+Q_{0} y
$$

where $T(z), Q_{0}(z), \ldots, Q_{n-1}(z)$ are polynomials in $\overline{\mathbb{Q}}[z]$.

Galochkin's condition for equations

Consider the differential

$$
T(z) y^{(n)}=Q_{n-1}(z) y^{(n-1)}+\cdots+Q_{1}(z) y^{\prime}+Q_{0} y
$$

where $T(z), Q_{0}(z), \ldots, Q_{n-1}(z)$ are polynomials in $\overline{\mathbb{Q}}[z]$. By recursion on m find polynomials $Q_{m, r} \in \overline{\mathbb{Q}}(z)$ for $r=0,1, \ldots, n-1$ such that
$T(z)^{m-n+1} y^{(m)}=Q_{m, n-1}(z) y^{(n-1)}+\cdots+Q_{m, 1}(z) y^{\prime}+Q_{m, 0}(z) y$.
In particular $Q_{n, r}(z)=Q_{r}(z)$.

Galochkin's condition for equations

Consider the differential

$$
T(z) y^{(n)}=Q_{n-1}(z) y^{(n-1)}+\cdots+Q_{1}(z) y^{\prime}+Q_{0} y
$$

where $T(z), Q_{0}(z), \ldots, Q_{n-1}(z)$ are polynomials in $\overline{\mathbb{Q}}[z]$. By recursion on m find polynomials $Q_{m, r} \in \overline{\mathbb{Q}}(z)$ for $r=0,1, \ldots, n-1$ such that
$T(z)^{m-n+1} y^{(m)}=Q_{m, n-1}(z) y^{(n-1)}+\cdots+Q_{m, 1}(z) y^{\prime}+Q_{m, 0}(z) y$.
In particular $Q_{n, r}(z)=Q_{r}(z)$.

Definition

The equation satisfies Galoschkin's condition if there exists $C>0$ such that for every integer s the common denominator of all coefficients of all polynomials $\frac{1}{m!} Q_{m, r}$ with $n \leq m \leq s, 0 \leq r \leq n-1$ is bounded by C^{s}.

Chudnovski's Theorem, bis

Theorem, Chudnovsky 1984
Let f be a G-function and let $L y=0$ be its minimal differential equation. Then $L y=0$ satisfies Galochkin's condition.

Regular singularities

Consider a linear differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

where $p_{i} \in \mathbb{C}[z]$ for all i. Suppose that $p_{n}(0)=0$. Then $z=0$ is a singular point.

Regular singularities

Consider a linear differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

where $p_{i} \in \mathbb{C}[z]$ for all i. Suppose that $p_{n}(0)=0$. Then $z=0$ is a singular point.

Criterion for regular singular points

The point $z=0$ is regular or a regular singular point if and only if the pole order of p_{i} / p_{n} at $z=0$ is at most $n-i$.

Regular singularities

Consider a linear differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

where $p_{i} \in \mathbb{C}[z]$ for all i. Suppose that $p_{n}(0)=0$. Then $z=0$ is a singular point.

Criterion for regular singular points

The point $z=0$ is regular or a regular singular point if and only if the pole order of p_{i} / p_{n} at $z=0$ is at most $n-i$.

Alternative criterion

The point $z=0$ is regular or a regular singular point if and only if the equation can be rewritten as

$$
z^{n} q_{n} y^{(n)}+z^{n-1} q_{n-1} y^{(n-1)}+\cdots+z q_{1} y^{\prime}+q_{0} y=0
$$

where $q_{i} \in \mathbb{C}[z]$ and $q_{n}(0) \neq 0$.

Regular singularities in general

Consider a differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

with $p_{i} \in \overline{\mathbb{Q}}[z]$ and let a be any point in $\mathbb{C} \cup \infty$.

Regular singularities in general

Consider a differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

with $p_{i} \in \overline{\mathbb{Q}}[z]$ and let a be any point in $\mathbb{C} \cup \infty$.

- Rewrite the equation in terms of a local parameter t at a (which comes down to putting $z=t+a$ and $z=1 / t$ if $a=\infty)$.

Regular singularities in general

Consider a differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

with $p_{i} \in \overline{\mathbb{Q}}[z]$ and let a be any point in $\mathbb{C} \cup \infty$.

- Rewrite the equation in terms of a local parameter t at a (which comes down to putting $z=t+a$ and $z=1 / t$ if $a=\infty)$.
- If $t=0$ is a regular singularity of the resulting equation, we say that a is a regular singularity of the orginal equation.

Regular singularities in general

Consider a differential equation

$$
p_{n} y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y=0
$$

with $p_{i} \in \overline{\mathbb{Q}}[z]$ and let a be any point in $\mathbb{C} \cup \infty$.

- Rewrite the equation in terms of a local parameter t at a (which comes down to putting $z=t+a$ and $z=1 / t$ if $a=\infty$).
- If $t=0$ is a regular singularity of the resulting equation, we say that a is a regular singularity of the orginal equation.

Proposition

The point $z=\infty$ is a singular point if and only if $\operatorname{deg}\left(p_{i}\right) \leq \operatorname{deg}\left(p_{n}\right)-n+i$ for $i=0,1, \ldots, n$

Fuchsian equations

Definition

A linear differential equation is called Fuchsian if every point in $\mathbb{C} \cup \infty$ is regular or a regular singularity.

Fuchsian equations

Definition

A linear differential equation is called Fuchsian if every point in $\mathbb{C} \cup \infty$ is regular or a regular singularity.

Example: $y^{\prime}=y$ is not a Fuchsian equation because ∞ is not a regular singularity (Replace $z=1 / t$ and we obtain $-t^{2} \frac{d y}{d t}=y$).

Galochkin implies Fuchsian

Theorem
Suppose the differential equation $L y=0$ satisfies Galochkin's condition. Then $L y=0$ is Fuchsian.

Galochkin implies Fuchsian

Theorem

Suppose the differential equation $L y=0$ satisfies Galochkin's condition. Then $L y=0$ is Fuchsian.

For the experts: Galochkin's condition implies that the equation is globally nilpotent (Bombieri,Dwork). That is

$$
D^{s p} \equiv M \circ L \quad(\bmod p)
$$

for almost all primes p and some integer s.
N.Katz showed that a globally nilpotent equation is Fuchsian with rational local exponents.

Galochkin to Fuchsian, proof sketch

By way of example consider the equation

$$
z^{2} y^{\prime \prime}=z A_{1} y^{\prime}+A_{0} y
$$

where A_{1}, A_{0} are rational functions.

Galochkin to Fuchsian, proof sketch

By way of example consider the equation

$$
z^{2} y^{\prime \prime}=z A_{1} y^{\prime}+A_{0} y
$$

where A_{1}, A_{0} are rational functions.
Suppose the equation is not Fuchsian. By way of example assume that A_{1}, A_{0} both have a first order pole in $z=0$.

Galochkin to Fuchsian, proof sketch

By way of example consider the equation

$$
z^{2} y^{\prime \prime}=z A_{1} y^{\prime}+A_{0} y
$$

where A_{1}, A_{0} are rational functions.
Suppose the equation is not Fuchsian. By way of example assume that A_{1}, A_{0} both have a first order pole in $z=0$.
By induction on m,

$$
z^{m} y^{(m)}=z A_{m, 1} y^{\prime}+A_{m, 0} y
$$

and

$$
\begin{aligned}
A_{m+1,1} & =(1-m) A_{m, 1}+z A_{m, 1}^{\prime}+A_{m, 1} A_{1}+A_{m, 0} \\
A_{m+1,0} & =A_{m, 1} A_{0}+z A_{m, 0}^{\prime}-m A_{m, 0}
\end{aligned}
$$

Galochkin to Fuchsian, continued

From the previous slide,

$$
z^{2} y^{\prime \prime}=z A_{1} y^{\prime}+A_{0} y
$$

and that A_{1}, A_{0} have pole order 1 . By induction,

$$
z^{m} y^{(m)}=z A_{m, 1} y^{\prime}+A_{m, 0} y
$$

Galochkin to Fuchsian, continued

From the previous slide,

$$
z^{2} y^{\prime \prime}=z A_{1} y^{\prime}+A_{0} y
$$

and that A_{1}, A_{0} have pole order 1 . By induction,

$$
z^{m} y^{(m)}=z A_{m, 1} y^{\prime}+A_{m, 0} y
$$

Suppose residue of A_{1} at $z=0$ is a. Then

$$
A_{m, 1}=\frac{a^{m-1}}{z^{m-1}}+\cdots
$$

Galochkin to Fuchsian, continued

From the previous slide,

$$
z^{2} y^{\prime \prime}=z A_{1} y^{\prime}+A_{0} y
$$

and that A_{1}, A_{0} have pole order 1 . By induction,

$$
z^{m} y^{(m)}=z A_{m, 1} y^{\prime}+A_{m, 0} y
$$

Suppose residue of A_{1} at $z=0$ is a. Then

$$
A_{m, 1}=\frac{a^{m-1}}{z^{m-1}}+\cdots
$$

So $A_{m, 1}$ is a rational function whose numerator has a constant term which grows exponentially in m. Thus $A_{m, 1} / m$! cannot satisfy Galochkin's condition.

Chudnovski's Theorem, encore

Theorem, Chudnovsky 1984
Let f be a G-function and let $L y=0$ be its minimal differential equation. Then $L y=0$ satisfies Galochkin's condition.

Chudnovski's Theorem, encore

Theorem, Chudnovsky 1984
Let f be a G-function and let $L y=0$ be its minimal differential equation. Then $L y=0$ satisfies Galochkin's condition. Moreover, $z=0$ is at worst a regular singularity of $L y=0$

