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G-functions, definition

Definition

An analytic function f (z) given by a powerseries

∞∑
k=0

akzk

with ak ∈ Q for all k and positive radius of convergence, is called a
G-function if

1 f (z) satisfies a linear differential equation with coefficients in
Q(z).

2 Both |ak | and the common denominators den(a0, . . . , ak) are
bounded by an exponential bound of the form C k , where
C > 0 depends only on f .
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G-functions, examples

1 f (z) is algebraic over Q(z) (Eisenstein theorem).

2

f (z) = 2F1

(
α, β

γ

∣∣∣∣ z

)
Gauss hypergeometric series with α, β, γ ∈ Q.

3 f (z) = Lk(z) =
∑

n≥1
zn

nk , the k-th polylogarithm.

4 f (z) =
∑∞

k=0 akzk where
a0 = 1, a1 = 3, a2 = 19, a3 = 147, . . . are the Apéry numbers
corresponding to Apéry’s irrationality proof of ζ(2). They are
determined by

ak =
k∑

r=0

(
k

r

)2(r + k

r

)
and satisfy the recurrence relation
(n + 1)2an+1 = (11n2 − 11n + 3)an − n2an−1.
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Periods

Consider a family of algebraic varieties parametrised by z and
consider a relative differential r -form Ωz . We assume everything
defined over Q. Take a continuous family of suitable cycles γz and
consider the integral

w(z) =

∫
γz

Ωz .

Then, by a theorem of N.Katz w(z) is a C-linear combination of
G-functions.

Example: Euler integral for the hypergeometric function

2F1

(
1/5, 4/5

8/5

∣∣∣∣ z

)
=

1

B(4/5, 4/5)

∫ 1

0

dx

x1/5(1− x)1/5(1− zx)1/5
.

This integral can be interpreted as a period (integral over a closed
loop) of the differential form dx/y on the algebraic curve
y5 = x(1− x)(1− zx).
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Irrationality results

A typical result for G-functions,

Galochkin, 1972

Let (f1(z), . . . , fn(z)) be a solution vector of a system of first order
equations of the form y′ = Gy and suppose that the fi (z) are
G-functions with coefficients in Q. Suppose also that
f1(z), . . . , fn(z) are linearly independent over Q(z) and that the
system satisfies the so-called Galochkin condition. Then there
exists C > 0 such that f1(a/b), . . . , fn(a/b) are Q-linear
independent whenever a, b ∈ Z and b > C |a|n+1 > 0.
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Wolfart’s examples

Theorem, Wolfart 1988

The functions 2F1

(
1/12, 5/12

1/2

∣∣∣ z
)

and 2F1

(
1/12, 7/12

2/3

∣∣∣ z
)

assume

algebraic values for a dense set of algebraic arguments in the unit
disk.

Theorem, Wolfart+FB, 1989

We have

2F1

(
1

12
,

5

12
,
1

2

∣∣∣∣ 1323

1331

)
=

3

4
4
√

11.

2F1

(
1

12
,

7

12
,
2

3

∣∣∣∣ 64000

64009

)
=

2

3
6
√

253.
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Galochkin condition

Start with the system
y′ = Gy

For s = 1, 2, 3, . . . define the iterated n × n-matrices Gs by

1

s!
y(s) = Gsy.

Let T (z) be the common denominator of all entries of G . Then,
for every s, the entries of T (z)sGs are polynomials. Denote the
least common denominator of all coefficients of all entries of
T (z)mGm/m! (m = 1, . . . , s) by qs .

Definition

With notation as above, we say that the system y′(z) = G (z)y(z)
satisfies Galochkin’s condition if there exists C > 0 such that
qs < C s for all s ≥ 1.
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Why Galochkin’s condition?

Recall that in Siegel’s method we construct polynomials Pi of
degree ≤ N such that

P1f1 + · · ·+ Pnfn = O(zN(n−ε)).

In vector notation P · f = O(zN(n−ε)). We also need the derivatives

1

m!
(P · f)(m) = O(zN(n−ε)−m), m = 0, 1, . . . ,Nε + γ.

Notice

1

m!
(P · f)(m) =

m∑
s=0

1

s!(m − s)!
(P)(m−s) · (f)(s)

=
m∑

s=0

1

(m − s)!
(P)(m−s) · Gs f
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Galochkin implies G-property

Lemma

Suppose we have an n × n-system satisfying Galochkin. Then, at
any nonsingular point a the system has a basis of solutions
consisting of G-functions in z − a.

Proof Put G0 equal to the n × n identity matrix and consider the
matrix

Y =
∑
s≥0

1

s!
Gs(a)(z − a)s .

It satisfies
Y ′ = GY

hence its columns satisfy the linear differential system and since
det(Y ) 6= 0 they form a basis. The G-function property of
Gs(a)/s! follows directly from Galochkin’s condition.
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Chudnovsky’s theorem

Chudnovsky, 1984

Let (f1(z), . . . , fn(z)) be a solution vector consisting of G-functions
of a system of first order equations of the form y′ = Gy. Suppose
that f1(z), . . . , fn(z) are linearly independent over Q(z). Then the
system satisfies Galochkin’s condition.

Idea of proof: Construct Q,P1, . . . ,Pn ∈ Q[z ] of degrees ≤ N such
that

Qfi − Pi = O(zN(1+1/n−ε)).

In vector notation:

Qf − P = O(zN(1+1/n−ε)).

Differentiate,

Q ′f + Qf ′ − P′ = O(zN(1+1/n−ε)−1).
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Proof sketch of Chudnovsky’s theorem

Use f ′ = G f to get

Q ′f + QG f − DP = O(zN(1+1/n−ε)−1)

where P′ = DP.

Substract G times the original form

Q ′f − (D − G )P = O(zN(1+1/n−ε)−1).

Repeating the argument s times and divide by s!,

1

s!
Q(s)f − 1

s!
(D − G )sP = O(zN(1+1/n−ε)−s).

Lemma

We have for any vector P ∈ Q(z)n,

GsP =
s∑

m=0

(−1)m

(s −m)!m!
Ds−m(D − G )mP.
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Galochkin’s condition for equations

Consider the differential

T (z)y (n) = Qn−1(z)y (n−1) + · · ·+ Q1(z)y ′ + Q0y

where T (z),Q0(z), . . . ,Qn−1(z) are polynomials in Q[z ].

By recursion on m find polynomials Qm,r ∈ Q(z) for
r = 0, 1, . . . , n − 1 such that

T (z)m−n+1y (m) = Qm,n−1(z)y (n−1) + · · ·+ Qm,1(z)y ′ + Qm,0(z)y .

In particular Qn,r (z) = Qr (z).

Definition

The equation satisfies Galoschkin’s condition if there exists C > 0
such that for every integer s the common denominator of all
coefficients of all polynomials 1

m!Qm,r with
n ≤ m ≤ s, 0 ≤ r ≤ n − 1 is bounded by C s .
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Chudnovski’s Theorem, bis

Theorem, Chudnovsky 1984

Let f be a G-function and let Ly = 0 be its minimal differential
equation. Then Ly = 0 satisfies Galochkin’s condition.
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Regular singularities

Consider a linear differential equation

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0

where pi ∈ C[z ] for all i . Suppose that pn(0) = 0. Then z = 0 is a
singular point.

Criterion for regular singular points

The point z = 0 is regular or a regular singular point if and only if
the pole order of pi/pn at z = 0 is at most n − i .

Alternative criterion

The point z = 0 is regular or a regular singular point if and only if
the equation can be rewritten as

znqny
(n) + zn−1qn−1y

(n−1) + · · ·+ zq1y
′ + q0y = 0

where qi ∈ C[z ] and qn(0) 6= 0.
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Regular singularities in general

Consider a differential equation

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0

with pi ∈ Q[z ] and let a be any point in C ∪∞.

Rewrite the equation in terms of a local parameter t at a
(which comes down to putting z = t + a and z = 1/t if
a = ∞).

If t = 0 is a regular singularity of the resulting equation, we
say that a is a regular singularity of the orginal equation.

Proposition

The point z = ∞ is a singular point if and only if
deg(pi ) ≤ deg(pn)− n + i for i = 0, 1, . . . , n
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Fuchsian equations

Definition

A linear differential equation is called Fuchsian if every point in
C ∪∞ is regular or a regular singularity.

Example: y ′ = y is not a Fuchsian equation because ∞ is not a
regular singularity (Replace z = 1/t and we obtain −t2 dy

dt = y).
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Galochkin implies Fuchsian

Theorem

Suppose the differential equation Ly = 0 satisfies Galochkin’s
condition. Then Ly = 0 is Fuchsian.

For the experts: Galochkin’s condition implies that the equation is
globally nilpotent (Bombieri,Dwork). That is

Dsp ≡ M ◦ L (mod p)

for almost all primes p and some integer s.
N.Katz showed that a globally nilpotent equation is Fuchsian with
rational local exponents.
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Galochkin to Fuchsian, proof sketch

By way of example consider the equation

z2y ′′ = zA1y
′ + A0y

where A1,A0 are rational functions.

Suppose the equation is not Fuchsian. By way of example assume
that A1,A0 both have a first order pole in z = 0.
By induction on m,

zmy (m) = zAm,1y
′ + Am,0y

and

Am+1,1 = (1−m)Am,1 + zA′m,1 + Am,1A1 + Am,0

Am+1,0 = Am,1A0 + zA′m,0 −mAm,0
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Galochkin to Fuchsian, continued

From the previous slide,

z2y ′′ = zA1y
′ + A0y

and that A1,A0 have pole order 1. By induction,

zmy (m) = zAm,1y
′ + Am,0y

Suppose residue of A1 at z = 0 is a. Then

Am,1 =
am−1

zm−1
+ · · ·

So Am,1 is a rational function whose numerator has a constant
term which grows exponentially in m. Thus Am,1/m! cannot
satisfy Galochkin’s condition.
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Chudnovski’s Theorem, encore

Theorem, Chudnovsky 1984

Let f be a G-function and let Ly = 0 be its minimal differential
equation. Then Ly = 0 satisfies Galochkin’s condition.

Moreover, z = 0 is at worst a regular singularity of Ly = 0
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