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Two theorems

Theorem, G.Chudnovsky 1984

The minimal differential equation of a G-function is Fuchsian.

Theorem, Y.André 2000

Let f (z) be an E-function. Then f (z) satisfies a differential
equation of the form

zmy (m) +
m−1∑
k=0

qk(z)y (k) = 0

where qk(z) ∈ Q[z ] for all k.
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Connecting E-functions and G-functions

Proposition

Let a0, a1, a2, . . . ∈ Q. Then the following are equivalent

1 f (z) =
∑

k≥0 ak
zk

k! is an E-function.

2 g(z) =
∑

k≥0 akzk is a G-function.

We must show that f satisfies a linear differential equation if and
only if g does.
The function g is a formal Laplace transform of f , more precisely∫ ∞

0
e−xz f (z)dz =

1

x
g(

1

x
).

Recall ∫ ∞

0
e−xz zk

k!
dz =

1

xk+1
.
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Connection between DE’s

For any non-negative integers k,m and repeated partial integration
we can derive the equality∫ ∞

0
e−xz

(
d

dz

)k

zmf (z)dz = xk

(
− d

dx

)m 1

x
g(

1

x
).

Assume that g(x) is a G-function. Then g(x) satisfies a linear
differential equation and so does 1

x g( 1
x ). Assume

M∑
m=0

Gm(x)

(
− d

dx

)m 1

x
g(

1

x
) = 0.

Then, by our Laplace transform property,

0 =

∫ ∞

0
e−xz

M∑
m=0

Gm

(
dk

dzk

)
zmf (z)dz .

Lecture 4 E- and G-functions 4 / 27



Connection between DE’s

For any non-negative integers k,m and repeated partial integration
we can derive the equality∫ ∞

0
e−xz

(
d

dz

)k

zmf (z)dz = xk

(
− d

dx

)m 1

x
g(

1

x
).

Assume that g(x) is a G-function. Then g(x) satisfies a linear
differential equation and so does 1

x g( 1
x ). Assume

M∑
m=0

Gm(x)

(
− d

dx

)m 1

x
g(

1

x
) = 0.

Then, by our Laplace transform property,

0 =

∫ ∞

0
e−xz

M∑
m=0

Gm

(
dk

dzk

)
zmf (z)dz .

Lecture 4 E- and G-functions 4 / 27



Connection between DE’s

For any non-negative integers k,m and repeated partial integration
we can derive the equality∫ ∞

0
e−xz

(
d

dz

)k

zmf (z)dz = xk

(
− d

dx

)m 1

x
g(

1

x
).

Assume that g(x) is a G-function. Then g(x) satisfies a linear
differential equation and so does 1

x g( 1
x ). Assume

M∑
m=0

Gm(x)

(
− d

dx

)m 1

x
g(

1

x
) = 0.

Then, by our Laplace transform property,

0 =

∫ ∞

0
e−xz

M∑
m=0

Gm

(
dk

dzk

)
zmf (z)dz .

Lecture 4 E- and G-functions 4 / 27



Proof of André’s Theorem

Hence
M∑

m=0

Gm(x)

(
− d

dx

)m 1

x
g(

1

x
) = 0.

implies
M∑

m=0

Gm

(
dk

dzk

)
zmf (z)dz = 0.

and vice versa. So we are done.

But there is more, the equation for g is Fuchsian. So
degx(Gi (x)) < degx(Gm(x)) for all i < m.

The order of the equation for f becomes deg Gm. The
coefficient of this highest derivative is zm.

This proves André’s theorem stating that an E-function
satisfies an equation with only singularity at z = 0.
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What are G-functions?

Recall

Theorem

The minimal differential equation of a G-function is Fuchsian.

Unfortunately the converse is not true.
Consider

z(z2 + 11z − 1)y ′′ + (3z2 + 22z − 1)y ′ + (z + λ)y = 0

and let yλ(z) =
∑

k≥0 ukzk be a solution. Then

(k + 1)2uk+1 = (11k(k + 1) + λ)uk + k2uk−1 k ≥ 1.

Taking u0 = 1 we get u1 = λ.

Question

For which λ ∈ Q is
∑

k≥0 ukzk a G-function?
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Some values of λ

Consider u0 = 1, u1 = λ and

(k + 1)2uk+1 = (11k(k + 1) + λ)uk + k2uk−1 k ≥ 1

Take λ = 0, then we get the sequence

1, 0,
1

4
,
11

6
,
977

64
,
162613

1200
,

14432069

11520
,
5603179109

470400
,
2983229567887

25804800
, . . .

Take λ = 3,then we get

1, 3, 19, 147, 1251, 11253, 104959, 1004307,

9793891, 96918753, 970336269, . . .
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A conjecture

Conjecture

Let u(z) =
∑

k≥0 ukzk and u0 = 1, u1 = λ ∈ Q and

(k + 1)2uk+1 = (11k(k + 1) + λ)uk + k2uk−1 k ≥ 1.

Then u(z) is a G-function if and only if λ = 3.

Proposition, FB 1999

The following are equivalent

λ ∈ Q and uk 3-adically integral for all k.

λ = 3.
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Proof of the Proposition

Let λ ∈ Qunram
3 , the maximal unramified extension of Q3. Consider

the corresponding recurrence and generating function uλ(z).

Theorem FB, 1998

Let f1 = 1 + z2, f2 = 1 + (1 + i)z − z2, f3 = 1 + (1− i)z − z2.
Suppose uλ ∈ Zunram

3 [[z ]]. Then there exists an infinite sequence
i1, i2, . . . with ij ∈ {1, 2, 3} such that

uλ(z) ≡ fi1(z)fi2(z)3fi3(z)3
2 · · · (mod 3).

Moreover this gives a 1-1 correspondence.

If we want uλ ∈ Z[[z ]] then we must have ij = 1 for all j . Hence,
by the 1-1 correspondence, there is precisely one solution with
uλ ∈ Z3[[z ]]. Since we know that u3 ∈ Z[[z ]] this must be our
solution.
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Bombieri-Dwork conjecture

Consider a family of algebraic varieties parametrised by z and
consider a relative differential r -form Ωz . We assume
everything defined over Q. Take a continuous family of
suitable cycles γz and consider the integral

w(z) =

∫
γz

Ωz .

It is known that w(z) satifies a linear differential equation, the
so-called Picard-Fuchs equation of the family.

By a theorem of N.Katz w(z) a Piard-Fuchs equation has
G-function solutions.

We say that a differential equation ’comes from geometry’ if it
a (factor of a) Picard-Fuchs equation.
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The main conjecture

Conjecture, Bombieri-Dwork

The minimal differential equation of a G-function comes from
geometry.
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An experiment by Zagier

Consider the recurrence

(k + 1)2uk+1 = (An(n + 1) + λ)uk + Bk2uk−1

for many choices of A,B, λ, u0, u1 ∈ Z.
Verify integrality of uk for k ≤ 20, say.

There are essentially 7 different finds with B(B2 − 4A) 6= 0.

A B λ

0 16 0
7 8 2
9 -27 3
10 -9 3
11 1 3
12 -32 4
17 -72 6
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Beauville’s list

Theorem, A.Beauville, 1982

Up to isomorphism there exist precisely 6 families of elliptic curves
over P1 which have 4 singular fibers with multiplicative reduction.

All of the above differential differential equations occur as
Picard-Fuchs equation for one of the families in Beauville’s list.
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Explicit equations and solutions

(z3 − z)y ′′ + (3z2 − 1)y ′ + zy = 0

Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣∣∣∣27z4(1− z2)2

4b(z)3

)
where b(z) = 1− z2 + z4/16.

z(z − 1)(8z + 1)y ′′ + (24z2 − 14z − 1)y ′ + (8z − 2)y = 0

Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣∣∣∣1728z6(z − 1)2(1 + 8z)

b(z)3

)
where b(z) = 1 + 8z − 16z3 + 16z4.
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Explicit equations and solutions, continued

z(z2 + 11z − 1)y ′′ + (3z2 + 22z − 1)y ′ + (z + 3)y = 0

Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣∣∣∣1728z5(1− 11z − z2)

b(z)3

)
where b(z) = 1− 12z + 14z2 + 12z3 + z4.

z(3z2 − 3z + 1)y ′′ + (3z − 1)2y ′ + (3z − 1)y = 0

Solution:

b(z)1/4
2F1

(
1/12 5/12

1

∣∣∣∣−64z3(1− 3z + 3z2)3

b(z)3

)
where b(z) = (1− z)(1− 3z + 3z2 − 9z3)
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Projective equivalence and pull-back

Consider two linear differential equations of order 2, L1y = 0 and
L2y = 0, with coefficients in C(z).

We say that they are projectively equivalent if there exists a
fractional power of a rational function R(z)1/m such that
L2 = L1 ◦ R(z)1/m.

We say that L2 is a rational pullback of L1 if there exists a
rational function S(z) such that the solutions of L2y = 0 are
given by y(S(z)) where y runs through the solutions of
L1y = 0.

We say that L2 is weak (rational) pullback of L1 if it is
projectively equivalent to a rationalpull back of L1.
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A conjecture by Dwork

Example, let uk =
∑k

r=0

(k
r

)2(k+r
r

)
be the sequence of Apéry

numbers and u(z) =
∑

k≥0 ukzk . Then from

u(z) = b(z)1/4
2F1

(
1/12 5/12

1

∣∣∣∣1728z5(1− 11z − z2)

b(z)3

)
with b(z) = 1− 12z +14z2 +12z3 + z4 it follows that the equation

(z2 + 11z − 1)y ′′ + (3z2 + 22z − 1)y ′ + (z + 3)y = 0

is a weak pullback of the differential equation for

2F1(1/12, 5/12, 1|z).

Conjecture, Dwork

An irreducible second order linear differential equation which has a
G-function solution is a weak pullback of Gaussian hypergeometric
function.
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A counterexample

Theorem, D.Krammer 1988

The differential equation

P(x)f ′′ +
1

2
P ′(x)f ′ +

x − 9

18
f = 0,

where P(x) = x(x − 1)(x − 81) has a G-function solution but is
not a weak pullback of a Gaussian hypergeometric function.

This equation, and several similar ones, occur in a paper by
G.Chudnovsky.
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Monodromy group

Consider a Fuchsian second order linear differential equation with
singular point set S . Choose z0 outside S and let y1, y2 be a basis
of solutions.

Take a closed contour γ beginning and ending in z0 and
continue y1, y2 analytically along γ.

We end with two continued solutions ỹ1, ỹ2. They should be
linear combinations of y1, y2 with constant coefficients.

Thus we get a matrix Mγ ∈ GL(2, C) such that(
ỹ1

ỹ2

)
= Mγ

(
y1

y2

)

Mγ depends only on the class γ ∈ π1(P1 \ S , z0) and the map
γ 7→ Mγ gives a representation γ ∈ π1(P1 \ S , z0) → GL(2, C),
the monodromy representation. The image is called
monodromy group.
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ỹ2

)
= Mγ

(
y1

y2

)

Mγ depends only on the class γ ∈ π1(P1 \ S , z0) and the map
γ 7→ Mγ gives a representation γ ∈ π1(P1 \ S , z0) → GL(2, C),
the monodromy representation. The image is called
monodromy group.

Lecture 4 E- and G-functions 19 / 27



Monodromy group

Consider a Fuchsian second order linear differential equation with
singular point set S . Choose z0 outside S and let y1, y2 be a basis
of solutions.

Take a closed contour γ beginning and ending in z0 and
continue y1, y2 analytically along γ.

We end with two continued solutions ỹ1, ỹ2. They should be
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Monodromy, continued

Suppose S = {s1, . . . , sr ,∞}. Then the monodromy group is
generated by the simple loops γi around the si . Moreover,
γ1 ◦ · · · ◦ γr ◦ γ∞ = 1.
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Triangle groups

The differential equation for the hypergeometric function

2F1(α, β, γ|z) reads

z(z − 1)F ′′ + ((α + β + 1)z − γ)F ′ + αβF = 0

Suppose α, β, γ ∈ Q. The the equation is Fuchsian with three
singularities 0, 1,∞. Let M0,M1,M∞ be the corresponding
monodromy matrices.

The monodromy group is subgroup of SL(2, R).

There exist p, q, r ∈ Z≥2, depending on α, β, γ, such that

M0M1M∞ = 1, Mp
0 = 1, Mq

1 = 1, M r
∞ = 1.

This is a Coxeter group and image in PGL(2, C) is a triangle
group.
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Quaternion groups

Let a, b be two primes.

Consider the quaternion algebra Q of discrimant ab generated
over Q by 1, i , j , k with the relations
i2 = a, j2 = b, k = ij = −ji .

Let O be a maximal order in Q and let O1 be the unit group
of norm 1 elements.

We can represent Q in M2(R) and therefore O1 is represented
in SL(2, R).
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Proof of Krammer’s theorem

The monodromy group M of Krammer’s equation
is a subgroup of O1 corresponding to the quaternin algebra
over Q of discriminant 15. In particular M is an arithmetic
group.

Suppose Krammer’s equation is a weak pullback of a
hypergeometric equation. Then M is commensurable with a
triangle group T . (This means that M ∩ T has finite index in
both M and T )

In the 1980’s Takeuchi gave a list of arithmetic triangle groups

Discriminant 15 does not occur in his list. Contradiction.
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Rescuing Dwork’s conjecture

Let Q15 be the quaternion algebra of discriminant 15 and O15

a maximal order.

Consider the moduli space of genus 2 curves C whose
Jacobian Jac(C ) has an endomorphism ring equal to O15.

This is a one dimensional family parametrised by z ∈ P1, say.

Krammer’s equation is the Picard-Fuchs equation for the
periods of this family.
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The hypergeometric connection

Consider the following period of the general genus 2 curve

y2 = x(1− x)(1− t1x)(1− t2x)(1− t3x),

1

π

∫ 1

0

dx√
x(1− x)(1− t1x)(1− t2x)(1− t3x)

.

Expand in powers of t1, t2, t3.∑
k,l ,m≥0

(1/2)k(1/2)l(1/2)m(1/2)k+l+m

k!l!m!(k + l + m)!
tk
1 t l

2t
m
3

This is an example of a Lauricella hypergeometric function of type
FD .
Krammer’s equation is obtained by replacing ti by suitable rational
functions ti (z) ∈ Q(z)
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Appell’s functions

Some two variable hypergeometric functions.

F1(α, β, β′, γ, x , y) =
∑

m,n≥0

(α)m+n(β)m(β′)n
m!n!(γ)m+n

xmyn

F2(α, β, β′, γ, γ′, x , y) =
∑

m,n≥0

(α)m+n(β)m(β′)n
m!n!(γ)m(γ′)n

xmyn

F3(α, α′, β, β′, γ, x , y) =
∑

m,n≥0

(α)m(α)n(β)m(β′)n
m!n!(γ)m+n

xmyn

F4(α, β, γ, γ′, x , y) =
∑

m,n≥0

(α)m+n(β)m+n

m!n!(γ)m(γ′)n
xmyn
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Constructing G-functions

Start with a hypergeometric equation system in several
variables with parameter space X = (x1, x2, . . . , xn).

Take a rational curve C in X and restrict the system to this
curve. Take a weak pullback D → C if you want.

The resulting system can be rewritten as an ordinary
differential equation with a G-function solution.

Question

Does every second order equation which is a minimal equation of a
G-function arise in this way? (possibly as a factor)
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