Lecture 4

Frits Beukers

Arithmetic of values of E- and G-function

Two theorems

Theorem, G.Chudnovsky 1984
The minimal differential equation of a G-function is Fuchsian.

Theorem, Y.André 2000

Let $f(z)$ be an E-function. Then $f(z)$ satisfies a differential equation of the form

$$
z^{m} y^{(m)}+\sum_{k=0}^{m-1} q_{k}(z) y^{(k)}=0
$$

where $q_{k}(z) \in \overline{\mathbb{Q}}[z]$ for all k.

Connecting E-functions and G-functions

Proposition

Let $a_{0}, a_{1}, a_{2}, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent
(1) $f(z)=\sum_{k \geq 0} a_{k} z_{k!}^{k!}$ is an E-function.
(2) $g(z)=\sum_{k \geq 0} a_{k} z^{k}$ is a G-function.

Connecting E-functions and G-functions

Proposition

Let $a_{0}, a_{1}, a_{2}, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent
(1) $f(z)=\sum_{k \geq 0} a_{k} z_{k}^{k}$ is an E-function.
(2) $g(z)=\sum_{k \geq 0} a_{k} z^{k}$ is a G-function.

We must show that f satisfies a linear differential equation if and only if g does.

Connecting E-functions and G-functions

Proposition

Let $a_{0}, a_{1}, a_{2}, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent
(1) $f(z)=\sum_{k \geq 0} a_{k} z_{k!}^{k!}$ is an E-function.
(2) $g(z)=\sum_{k \geq 0} a_{k} z^{k}$ is a G-function.

We must show that f satisfies a linear differential equation if and only if g does.
The function g is a formal Laplace transform of f, more precisely

$$
\int_{0}^{\infty} e^{-x z} f(z) d z=\frac{1}{x} g\left(\frac{1}{x}\right)
$$

Connecting E-functions and G-functions

Proposition

Let $a_{0}, a_{1}, a_{2}, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent
(1) $f(z)=\sum_{k \geq 0} a_{k} z_{k!}^{k!}$ is an E-function.
(2) $g(z)=\sum_{k \geq 0} a_{k} z^{k}$ is a G-function.

We must show that f satisfies a linear differential equation if and only if g does.
The function g is a formal Laplace transform of f, more precisely

$$
\int_{0}^{\infty} e^{-x z} f(z) d z=\frac{1}{x} g\left(\frac{1}{x}\right)
$$

Recall

$$
\int_{0}^{\infty} e^{-x z} \frac{z^{k}}{k!} d z=\frac{1}{x^{k+1}}
$$

Connection between DE's

For any non-negative integers k, m and repeated partial integration we can derive the equality

$$
\int_{0}^{\infty} e^{-x z}\left(\frac{d}{d z}\right)^{k} z^{m} f(z) d z=x^{k}\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)
$$

Connection between DE's

For any non-negative integers k, m and repeated partial integration we can derive the equality

$$
\int_{0}^{\infty} e^{-x z}\left(\frac{d}{d z}\right)^{k} z^{m} f(z) d z=x^{k}\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)
$$

Assume that $g(x)$ is a G-function. Then $g(x)$ satisfies a linear differential equation and so does $\frac{1}{x} g\left(\frac{1}{x}\right)$. Assume

$$
\sum_{m=0}^{M} G_{m}(x)\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)=0
$$

Connection between DE's

For any non-negative integers k, m and repeated partial integration we can derive the equality

$$
\int_{0}^{\infty} e^{-x z}\left(\frac{d}{d z}\right)^{k} z^{m} f(z) d z=x^{k}\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)
$$

Assume that $g(x)$ is a G-function. Then $g(x)$ satisfies a linear differential equation and so does $\frac{1}{x} g\left(\frac{1}{x}\right)$. Assume

$$
\sum_{m=0}^{M} G_{m}(x)\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)=0
$$

Then, by our Laplace transform property,

$$
0=\int_{0}^{\infty} e^{-x z} \sum_{m=0}^{M} G_{m}\left(\frac{d^{k}}{d z^{k}}\right) z^{m} f(z) d z
$$

Proof of André's Theorem

Hence

$$
\sum_{m=0}^{M} G_{m}(x)\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)=0
$$

implies

$$
\sum_{m=0}^{M} G_{m}\left(\frac{d^{k}}{d z^{k}}\right) z^{m} f(z) d z=0
$$

and vice versa. So we are done.

Proof of André's Theorem

Hence

$$
\sum_{m=0}^{M} G_{m}(x)\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)=0
$$

implies

$$
\sum_{m=0}^{M} G_{m}\left(\frac{d^{k}}{d z^{k}}\right) z^{m} f(z) d z=0
$$

and vice versa. So we are done.

- But there is more, the equation for g is Fuchsian. So $\operatorname{deg}_{x}\left(G_{i}(x)\right)<\operatorname{deg}_{x}\left(G_{m}(x)\right)$ for all $i<m$.

Proof of André's Theorem

Hence

$$
\sum_{m=0}^{M} G_{m}(x)\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)=0
$$

implies

$$
\sum_{m=0}^{M} G_{m}\left(\frac{d^{k}}{d z^{k}}\right) z^{m} f(z) d z=0
$$

and vice versa. So we are done.

- But there is more, the equation for g is Fuchsian. So $\operatorname{deg}_{x}\left(G_{i}(x)\right)<\operatorname{deg}_{x}\left(G_{m}(x)\right)$ for all $i<m$.
- The order of the equation for f becomes $\operatorname{deg} G_{m}$. The coefficient of this highest derivative is z^{m}.

Proof of André's Theorem

Hence

$$
\sum_{m=0}^{M} G_{m}(x)\left(-\frac{d}{d x}\right)^{m} \frac{1}{x} g\left(\frac{1}{x}\right)=0
$$

implies

$$
\sum_{m=0}^{M} G_{m}\left(\frac{d^{k}}{d z^{k}}\right) z^{m} f(z) d z=0
$$

and vice versa. So we are done.

- But there is more, the equation for g is Fuchsian. So $\operatorname{deg}_{x}\left(G_{i}(x)\right)<\operatorname{deg}_{x}\left(G_{m}(x)\right)$ for all $i<m$.
- The order of the equation for f becomes $\operatorname{deg} G_{m}$. The coefficient of this highest derivative is z^{m}.
- This proves André's theorem stating that an E-function satisfies an equation with only singularity at $z=0$.

What are G-functions?

Recall
Theorem
The minimal differential equation of a G-function is Fuchsian.

What are G-functions?

Recall
Theorem
The minimal differential equation of a G-function is Fuchsian.
Unfortunately the converse is not true.

What are G-functions?

Recall

Theorem
The minimal differential equation of a G-function is Fuchsian.
Unfortunately the converse is not true.
Consider

$$
z\left(z^{2}+11 z-1\right) y^{\prime \prime}+\left(3 z^{2}+22 z-1\right) y^{\prime}+(z+\lambda) y=0
$$

and let $y_{\lambda}(z)=\sum_{k \geq 0} u_{k} z^{k}$ be a solution.

What are G-functions?

Recall

Theorem
The minimal differential equation of a G-function is Fuchsian.
Unfortunately the converse is not true.
Consider

$$
z\left(z^{2}+11 z-1\right) y^{\prime \prime}+\left(3 z^{2}+22 z-1\right) y^{\prime}+(z+\lambda) y=0
$$

and let $y_{\lambda}(z)=\sum_{k \geq 0} u_{k} z^{k}$ be a solution. Then

$$
(k+1)^{2} u_{k+1}=(11 k(k+1)+\lambda) u_{k}+k^{2} u_{k-1} \quad k \geq 1 .
$$

Taking $u_{0}=1$ we get $u_{1}=\lambda$.

What are G-functions?

Recall

Theorem
The minimal differential equation of a G-function is Fuchsian.
Unfortunately the converse is not true.
Consider

$$
z\left(z^{2}+11 z-1\right) y^{\prime \prime}+\left(3 z^{2}+22 z-1\right) y^{\prime}+(z+\lambda) y=0
$$

and let $y_{\lambda}(z)=\sum_{k \geq 0} u_{k} z^{k}$ be a solution. Then

$$
(k+1)^{2} u_{k+1}=(11 k(k+1)+\lambda) u_{k}+k^{2} u_{k-1} \quad k \geq 1
$$

Taking $u_{0}=1$ we get $u_{1}=\lambda$.

Question

For which $\lambda \in \overline{\mathbb{Q}}$ is $\sum_{k \geq 0} u_{k} z^{k}$ a G-function?

Some values of λ

Consider $u_{0}=1, u_{1}=\lambda$ and

$$
(k+1)^{2} u_{k+1}=(11 k(k+1)+\lambda) u_{k}+k^{2} u_{k-1} \quad k \geq 1
$$

Some values of λ

Consider $u_{0}=1, u_{1}=\lambda$ and

$$
(k+1)^{2} u_{k+1}=(11 k(k+1)+\lambda) u_{k}+k^{2} u_{k-1} \quad k \geq 1
$$

Take $\lambda=0$, then we get the sequence

$$
1,0, \frac{1}{4}, \frac{11}{6}, \frac{977}{64}, \frac{162613}{1200}
$$

$\frac{14432069}{11520}, \frac{5603179109}{470400}, \frac{2983229567887}{25804800}, \ldots$

Some values of λ

Consider $u_{0}=1, u_{1}=\lambda$ and

$$
(k+1)^{2} u_{k+1}=(11 k(k+1)+\lambda) u_{k}+k^{2} u_{k-1} \quad k \geq 1
$$

Take $\lambda=0$, then we get the sequence

$$
1,0, \frac{1}{4}, \frac{11}{6}, \frac{977}{64}, \frac{162613}{1200}
$$

$$
\frac{14432069}{11520}, \frac{5603179109}{470400}, \frac{2983229567887}{25804800}, \ldots
$$

Take $\lambda=3$, then we get
$1,3,19,147,1251,11253,104959,1004307$,

9793891, 96918753, $970336269, \ldots$

A conjecture

Conjecture

Let $u(z)=\sum_{k \geq 0} u_{k} z^{k}$ and $u_{0}=1, u_{1}=\lambda \in \overline{\mathbb{Q}}$ and

$$
(k+1)^{2} u_{k+1}=(11 k(k+1)+\lambda) u_{k}+k^{2} u_{k-1} \quad k \geq 1 .
$$

Then $u(z)$ is a G-function if and only if $\lambda=3$.

Proposition, FB 1999

The following are equivalent

- $\lambda \in \mathbb{Q}$ and u_{k} 3-adically integral for all k.
- $\lambda=3$.

Proof of the Proposition

Let $\lambda \in \mathbb{Q}_{3}^{\text {unram }}$, the maximal unramified extension of \mathbb{Q}_{3}. Consider the corresponding recurrence and generating function $u_{\lambda}(z)$.

Theorem FB, 1998

Let $f_{1}=1+z^{2}, f_{2}=1+(1+i) z-z^{2}, f_{3}=1+(1-i) z-z^{2}$. Suppose $u_{\lambda} \in \mathbb{Z}_{3}^{\text {unram }}[[z]]$. Then there exists an infinite sequence i_{1}, i_{2}, \ldots with $i_{j} \in\{1,2,3\}$ such that

$$
u_{\lambda}(z) \equiv f_{i_{1}}(z) f_{i_{2}}(z)^{3} f_{i_{3}}(z)^{3^{2}} \cdots(\bmod 3)
$$

Moreover this gives a 1-1 correspondence.

Proof of the Proposition

Let $\lambda \in \mathbb{Q}_{3}^{\text {unram }}$, the maximal unramified extension of \mathbb{Q}_{3}. Consider the corresponding recurrence and generating function $u_{\lambda}(z)$.

Theorem FB, 1998

Let $f_{1}=1+z^{2}, f_{2}=1+(1+i) z-z^{2}, f_{3}=1+(1-i) z-z^{2}$. Suppose $u_{\lambda} \in \mathbb{Z}_{3}^{\text {unram }}[[z]]$. Then there exists an infinite sequence i_{1}, i_{2}, \ldots with $i_{j} \in\{1,2,3\}$ such that

$$
u_{\lambda}(z) \equiv f_{i_{1}}(z) f_{i_{2}}(z)^{3} f_{i_{3}}(z)^{3^{2}} \cdots(\bmod 3)
$$

Moreover this gives a 1-1 correspondence.
If we want $u_{\lambda} \in \mathbb{Z}[[z]]$ then we must have $i_{j}=1$ for all j. Hence, by the 1-1 correspondence, there is precisely one solution with $u_{\lambda} \in \mathbb{Z}_{3}[[z]]$. Since we know that $u_{3} \in \mathbb{Z}[[z]]$ this must be our solution.

Bombieri-Dwork conjecture

- Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_{z}. We assume everything defined over $\overline{\mathbb{Q}}$. Take a continuous family of suitable cycles γ_{z} and consider the integral

$$
w(z)=\int_{\gamma_{z}} \Omega_{z}
$$

Bombieri-Dwork conjecture

- Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_{z}. We assume everything defined over $\overline{\mathbb{Q}}$. Take a continuous family of suitable cycles γ_{z} and consider the integral

$$
w(z)=\int_{\gamma_{z}} \Omega_{z}
$$

- It is known that $w(z)$ satifies a linear differential equation, the so-called Picard-Fuchs equation of the family.

Bombieri-Dwork conjecture

- Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_{z}. We assume everything defined over $\overline{\mathbb{Q}}$. Take a continuous family of suitable cycles γ_{z} and consider the integral

$$
w(z)=\int_{\gamma_{z}} \Omega_{z}
$$

- It is known that $w(z)$ satifies a linear differential equation, the so-called Picard-Fuchs equation of the family.
- By a theorem of N.Katz $w(z)$ a Piard-Fuchs equation has G-function solutions.

Bombieri-Dwork conjecture

- Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_{z}. We assume everything defined over $\overline{\mathbb{Q}}$. Take a continuous family of suitable cycles γ_{z} and consider the integral

$$
w(z)=\int_{\gamma_{z}} \Omega_{z}
$$

- It is known that $w(z)$ satifies a linear differential equation, the so-called Picard-Fuchs equation of the family.
- By a theorem of N.Katz $w(z)$ a Piard-Fuchs equation has G-function solutions.
- We say that a differential equation 'comes from geometry' if it a (factor of a) Picard-Fuchs equation.

The main conjecture

Conjecture, Bombieri-Dwork

The minimal differential equation of a G-function comes from geometry.

An experiment by Zagier

- Consider the recurrence

$$
(k+1)^{2} u_{k+1}=(A n(n+1)+\lambda) u_{k}+B k^{2} u_{k-1}
$$

for many choices of $A, B, \lambda, u_{0}, u_{1} \in \mathbb{Z}$.
Verify integrality of u_{k} for $k \leq 20$, say.

An experiment by Zagier

- Consider the recurrence

$$
(k+1)^{2} u_{k+1}=(A n(n+1)+\lambda) u_{k}+B k^{2} u_{k-1}
$$

for many choices of $A, B, \lambda, u_{0}, u_{1} \in \mathbb{Z}$.
Verify integrality of u_{k} for $k \leq 20$, say.

- There are essentially 7 different finds with $B\left(B^{2}-4 A\right) \neq 0$.

A	B	λ
0	16	0
7	8	2
9	-27	3
10	-9	3
11	1	3
12	-32	4
17	-72	6

Beauville's list

Theorem, A.Beauville, 1982
Up to isomorphism there exist precisely 6 families of elliptic curves over \mathbb{P}^{1} which have 4 singular fibers with multiplicative reduction.

Beauville's list

Theorem, A.Beauville, 1982
Up to isomorphism there exist precisely 6 families of elliptic curves over \mathbb{P}^{1} which have 4 singular fibers with multiplicative reduction.

All of the above differential differential equations occur as
Picard-Fuchs equation for one of the families in Beauville's list.

Explicit equations and solutions

$$
\left(z^{3}-z\right) y^{\prime \prime}+\left(3 z^{2}-1\right) y^{\prime}+z y=0
$$

Solution:

$$
b(z)^{1 / 4}{ }_{2} F_{1}\left(\begin{array}{c|c}
1 / 125 / 12 \\
1 & \frac{27 z^{4}\left(1-z^{2}\right)^{2}}{4 b(z)^{3}}
\end{array}\right)
$$

where $b(z)=1-z^{2}+z^{4} / 16$.

$$
z(z-1)(8 z+1) y^{\prime \prime}+\left(24 z^{2}-14 z-1\right) y^{\prime}+(8 z-2) y=0
$$

Solution:

$$
b(z)^{1 / 4}{ }_{2} F_{1}\left(\begin{array}{c|c}
1 / 125 / 12 & \frac{1728 z^{6}(z-1)^{2}(1+8 z)}{b(z)^{3}}
\end{array}\right)
$$

where $b(z)=1+8 z-16 z^{3}+16 z^{4}$.

Explicit equations and solutions, continued

$$
z\left(z^{2}+11 z-1\right) y^{\prime \prime}+\left(3 z^{2}+22 z-1\right) y^{\prime}+(z+3) y=0
$$

Solution:

$$
b(z)^{1 / 4}{ }_{2} F_{1}\left(\begin{array}{c}
1 / 125 / 12 \\
1
\end{array} \left\lvert\, \frac{1728 z^{5}\left(1-11 z-z^{2}\right)}{b(z)^{3}}\right.\right)
$$

where $b(z)=1-12 z+14 z^{2}+12 z^{3}+z^{4}$.

$$
z\left(3 z^{2}-3 z+1\right) y^{\prime \prime}+(3 z-1)^{2} y^{\prime}+(3 z-1) y=0
$$

Solution:

$$
b(z)^{1 / 4}{ }_{2} F_{1}\left(\begin{array}{c|c}
1 / 125 / 12 & -64 z^{3}\left(1-3 z+3 z^{2}\right)^{3} \\
1
\end{array}\right)
$$

where $b(z)=(1-z)\left(1-3 z+3 z^{2}-9 z^{3}\right)$

Projective equivalence and pull-back

Consider two linear differential equations of order $2, L_{1} y=0$ and $L_{2} y=0$, with coefficients in $\mathbb{C}(z)$.

Projective equivalence and pull-back

Consider two linear differential equations of order $2, L_{1} y=0$ and $L_{2} y=0$, with coefficients in $\mathbb{C}(z)$.

- We say that they are projectively equivalent if there exists a fractional power of a rational function $R(z)^{1 / m}$ such that $L_{2}=L_{1} \circ R(z)^{1 / m}$.

Projective equivalence and pull-back

Consider two linear differential equations of order $2, L_{1} y=0$ and $L_{2} y=0$, with coefficients in $\mathbb{C}(z)$.

- We say that they are projectively equivalent if there exists a fractional power of a rational function $R(z)^{1 / m}$ such that $L_{2}=L_{1} \circ R(z)^{1 / m}$.
- We say that L_{2} is a rational pullback of L_{1} if there exists a rational function $S(z)$ such that the solutions of $L_{2} y=0$ are given by $y(S(z))$ where y runs through the solutions of $L_{1} y=0$.

Projective equivalence and pull-back

Consider two linear differential equations of order 2, $L_{1} y=0$ and $L_{2} y=0$, with coefficients in $\mathbb{C}(z)$.

- We say that they are projectively equivalent if there exists a fractional power of a rational function $R(z)^{1 / m}$ such that $L_{2}=L_{1} \circ R(z)^{1 / m}$.
- We say that L_{2} is a rational pullback of L_{1} if there exists a rational function $S(z)$ such that the solutions of $L_{2} y=0$ are given by $y(S(z))$ where y runs through the solutions of $L_{1} y=0$.
- We say that L_{2} is weak (rational) pullback of L_{1} if it is projectively equivalent to a rationalpull back of L_{1}.

A conjecture by Dwork

Example, let $u_{k}=\sum_{r=0}^{k}\binom{k}{r}^{2}\binom{k+r}{r}$ be the sequence of Apéry numbers and $u(z)=\sum_{k \geq 0} u_{k} z^{k}$. Then from

$$
u(z)=b(z)^{1 / 4}{ }_{2} F_{1}\left(\begin{array}{c|c}
1 / 125 / 12 \\
1
\end{array} \left\lvert\, \frac{1728 z^{5}\left(1-11 z-z^{2}\right)}{b(z)^{3}}\right.\right)
$$

with $b(z)=1-12 z+14 z^{2}+12 z^{3}+z^{4}$ it follows that the equation

$$
\left(z^{2}+11 z-1\right) y^{\prime \prime}+\left(3 z^{2}+22 z-1\right) y^{\prime}+(z+3) y=0
$$

is a weak pullback of the differential equation for ${ }_{2} F_{1}(1 / 12,5 / 12,1 \mid z)$.

A conjecture by Dwork

Example, let $u_{k}=\sum_{r=0}^{k}\binom{k}{r}^{2}\binom{k+r}{r}$ be the sequence of Apéry numbers and $u(z)=\sum_{k \geq 0} u_{k} z^{k}$. Then from

$$
u(z)=b(z)^{1 / 4}{ }_{2} F_{1}\left(\begin{array}{c|c}
1 / 125 / 12 \\
1
\end{array} \left\lvert\, \frac{1728 z^{5}\left(1-11 z-z^{2}\right)}{b(z)^{3}}\right.\right)
$$

with $b(z)=1-12 z+14 z^{2}+12 z^{3}+z^{4}$ it follows that the equation

$$
\left(z^{2}+11 z-1\right) y^{\prime \prime}+\left(3 z^{2}+22 z-1\right) y^{\prime}+(z+3) y=0
$$

is a weak pullback of the differential equation for ${ }_{2} F_{1}(1 / 12,5 / 12,1 \mid z)$.

Conjecture, Dwork

An irreducible second order linear differential equation which has a G-function solution is a weak pullback of Gaussian hypergeometric function.

A counterexample

Theorem, D.Krammer 1988
The differential equation

$$
P(x) f^{\prime \prime}+\frac{1}{2} P^{\prime}(x) f^{\prime}+\frac{x-9}{18} f=0
$$

where $P(x)=x(x-1)(x-81)$ has a G-function solution but is not a weak pullback of a Gaussian hypergeometric function.

A counterexample

Theorem, D.Krammer 1988

The differential equation

$$
P(x) f^{\prime \prime}+\frac{1}{2} P^{\prime}(x) f^{\prime}+\frac{x-9}{18} f=0
$$

where $P(x)=x(x-1)(x-81)$ has a G-function solution but is not a weak pullback of a Gaussian hypergeometric function.

This equation, and several similar ones, occur in a paper by G.Chudnovsky.

Monodromy group

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_{0} outside S and let y_{1}, y_{2} be a basis of solutions.

Monodromy group

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_{0} outside S and let y_{1}, y_{2} be a basis of solutions.

- Take a closed contour γ beginning and ending in z_{0} and continue y_{1}, y_{2} analytically along γ.

Monodromy group

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_{0} outside S and let y_{1}, y_{2} be a basis of solutions.

- Take a closed contour γ beginning and ending in z_{0} and continue y_{1}, y_{2} analytically along γ.
- We end with two continued solutions $\tilde{y}_{1}, \tilde{y}_{2}$. They should be linear combinations of y_{1}, y_{2} with constant coefficients.

Monodromy group

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_{0} outside S and let y_{1}, y_{2} be a basis of solutions.

- Take a closed contour γ beginning and ending in z_{0} and continue y_{1}, y_{2} analytically along γ.
- We end with two continued solutions $\tilde{y}_{1}, \tilde{y}_{2}$. They should be linear combinations of y_{1}, y_{2} with constant coefficients.
- Thus we get a matrix $M_{\gamma} \in G L(2, \mathbb{C})$ such that

$$
\binom{\tilde{y}_{1}}{\tilde{y}_{2}}=M_{\gamma}\binom{y_{1}}{y_{2}}
$$

Monodromy group

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_{0} outside S and let y_{1}, y_{2} be a basis of solutions.

- Take a closed contour γ beginning and ending in z_{0} and continue y_{1}, y_{2} analytically along γ.
- We end with two continued solutions $\tilde{y}_{1}, \tilde{y}_{2}$. They should be linear combinations of y_{1}, y_{2} with constant coefficients.
- Thus we get a matrix $M_{\gamma} \in G L(2, \mathbb{C})$ such that

$$
\binom{\tilde{y}_{1}}{\tilde{y}_{2}}=M_{\gamma}\binom{y_{1}}{y_{2}}
$$

- M_{γ} depends only on the class $\gamma \in \pi_{1}\left(\mathbb{P}^{1} \backslash S, z_{0}\right)$ and the map $\gamma \mapsto M_{\gamma}$ gives a representation $\gamma \in \pi_{1}\left(\mathbb{P}^{1} \backslash S, z_{0}\right) \rightarrow G L(2, \mathbb{C})$, the monodromy representation. The image is called monodromy group.

Monodromy, continued

- Suppose $S=\left\{s_{1}, \ldots, s_{r}, \infty\right\}$. Then the monodromy group is generated by the simple loops γ_{i} around the s_{i}. Moreover, $\gamma_{1} \circ \cdots \circ \gamma_{r} \circ \gamma_{\infty}=1$.

Triangle groups

The differential equation for the hypergeometric function ${ }_{2} F_{1}(\alpha, \beta, \gamma \mid z)$ reads

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

Triangle groups

The differential equation for the hypergeometric function ${ }_{2} F_{1}(\alpha, \beta, \gamma \mid z)$ reads

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

- Suppose $\alpha, \beta, \gamma \in \mathbb{Q}$. The the equation is Fuchsian with three singularities $0,1, \infty$. Let M_{0}, M_{1}, M_{∞} be the corresponding monodromy matrices.

Triangle groups

The differential equation for the hypergeometric function ${ }_{2} F_{1}(\alpha, \beta, \gamma \mid z)$ reads

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

- Suppose $\alpha, \beta, \gamma \in \mathbb{Q}$. The the equation is Fuchsian with three singularities $0,1, \infty$. Let M_{0}, M_{1}, M_{∞} be the corresponding monodromy matrices.
- The monodromy group is subgroup of $S L(2, \mathbb{R})$.

Triangle groups

The differential equation for the hypergeometric function ${ }_{2} F_{1}(\alpha, \beta, \gamma \mid z)$ reads

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

- Suppose $\alpha, \beta, \gamma \in \mathbb{Q}$. The the equation is Fuchsian with three singularities $0,1, \infty$. Let M_{0}, M_{1}, M_{∞} be the corresponding monodromy matrices.
- The monodromy group is subgroup of $S L(2, \mathbb{R})$.
- There exist $p, q, r \in \mathbb{Z}_{\geq 2}$, depending on α, β, γ, such that

$$
M_{0} M_{1} M_{\infty}=1, \quad M_{0}^{p}=1, \quad M_{1}^{q}=1, \quad M_{\infty}^{r}=1
$$

This is a Coxeter group and image in $\operatorname{PGL}(2, \mathbb{C})$ is a triangle group.

Quaternion groups

Let a, b be two primes.

Quaternion groups

Let a, b be two primes.

- Consider the quaternion algebra Q of discrimant $a b$ generated over \mathbb{Q} by $1, i, j, k$ with the relations

$$
i^{2}=a, j^{2}=b, k=i j=-j i .
$$

Quaternion groups

Let a, b be two primes.

- Consider the quaternion algebra Q of discrimant ab generated over \mathbb{Q} by $1, i, j, k$ with the relations
$i^{2}=a, j^{2}=b, k=i j=-j i$.
- Let \mathscr{O} be a maximal order in Q and let \mathscr{O}^{1} be the unit group of norm 1 elements.

Quaternion groups

Let a, b be two primes.

- Consider the quaternion algebra Q of discrimant ab generated over \mathbb{Q} by $1, i, j, k$ with the relations $i^{2}=a, j^{2}=b, k=i j=-j i$.
- Let \mathscr{O} be a maximal order in Q and let \mathscr{O}^{1} be the unit group of norm 1 elements.
- We can represent Q in $M_{2}(\mathbb{R})$ and therefore \mathscr{O}^{1} is represented in $S L(2, \mathbb{R})$.

Proof of Krammer's theorem

- The monodromy group M of Krammer's equation is a subgroup of \mathscr{O}^{1} corresponding to the quaternin algebra over \mathbb{Q} of discriminant 15. In particular M is an arithmetic group.

Proof of Krammer's theorem

- The monodromy group M of Krammer's equation is a subgroup of \mathscr{O}^{1} corresponding to the quaternin algebra over \mathbb{Q} of discriminant 15 . In particular M is an arithmetic group.
- Suppose Krammer's equation is a weak pullback of a hypergeometric equation. Then M is commensurable with a triangle group T. (This means that $M \cap T$ has finite index in both M and T)

Proof of Krammer's theorem

- The monodromy group M of Krammer's equation is a subgroup of \mathscr{O}^{1} corresponding to the quaternin algebra over \mathbb{Q} of discriminant 15. In particular M is an arithmetic group.
- Suppose Krammer's equation is a weak pullback of a hypergeometric equation. Then M is commensurable with a triangle group T. (This means that $M \cap T$ has finite index in both M and T)
- In the 1980's Takeuchi gave a list of arithmetic triangle groups

Proof of Krammer's theorem

- The monodromy group M of Krammer's equation is a subgroup of \mathscr{O}^{1} corresponding to the quaternin algebra over \mathbb{Q} of discriminant 15. In particular M is an arithmetic group.
- Suppose Krammer's equation is a weak pullback of a hypergeometric equation. Then M is commensurable with a triangle group T. (This means that $M \cap T$ has finite index in both M and T)
- In the 1980's Takeuchi gave a list of arithmetic triangle groups
- Discriminant 15 does not occur in his list. Contradiction.

Rescuing Dwork's conjecture

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathscr{O}_{15} a maximal order.

Rescuing Dwork's conjecture

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathscr{O}_{15} a maximal order.
- Consider the moduli space of genus 2 curves C whose Jacobian $\operatorname{Jac}(C)$ has an endomorphism ring equal to \mathscr{O}_{15}.

Rescuing Dwork's conjecture

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathscr{O}_{15} a maximal order.
- Consider the moduli space of genus 2 curves C whose Jacobian $\operatorname{Jac}(C)$ has an endomorphism ring equal to \mathscr{O}_{15}.
- This is a one dimensional family parametrised by $z \in \mathbb{P}^{1}$, say.

Rescuing Dwork's conjecture

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathscr{O}_{15} a maximal order.
- Consider the moduli space of genus 2 curves C whose Jacobian $\operatorname{Jac}(C)$ has an endomorphism ring equal to \mathscr{O}_{15}.
- This is a one dimensional family parametrised by $z \in \mathbb{P}^{1}$, say.
- Krammer's equation is the Picard-Fuchs equation for the periods of this family.

The hypergeometric connection

Consider the following period of the general genus 2 curve

$$
\begin{gathered}
y^{2}=x(1-x)\left(1-t_{1} x\right)\left(1-t_{2} x\right)\left(1-t_{3} x\right) \\
\frac{1}{\pi} \int_{0}^{1} \frac{d x}{\sqrt{x(1-x)\left(1-t_{1} x\right)\left(1-t_{2} x\right)\left(1-t_{3} x\right)}}
\end{gathered}
$$

Expand in powers of t_{1}, t_{2}, t_{3}.

$$
\sum_{k, l, m \geq 0} \frac{(1 / 2)_{k}(1 / 2)_{\iota}(1 / 2)_{m}(1 / 2)_{k+l+m}}{k!/!m!(k+l+m)!} t_{1}^{k} t_{2}^{l} t_{3}^{m}
$$

The hypergeometric connection

Consider the following period of the general genus 2 curve

$$
\begin{gathered}
y^{2}=x(1-x)\left(1-t_{1} x\right)\left(1-t_{2} x\right)\left(1-t_{3} x\right) \\
\frac{1}{\pi} \int_{0}^{1} \frac{d x}{\sqrt{x(1-x)\left(1-t_{1} x\right)\left(1-t_{2} x\right)\left(1-t_{3} x\right)}}
\end{gathered}
$$

Expand in powers of t_{1}, t_{2}, t_{3}.

$$
\sum_{k, l, m \geq 0} \frac{(1 / 2)_{k}(1 / 2)_{\iota}(1 / 2)_{m}(1 / 2)_{k+l+m}}{k!/!m!(k+l+m)!} t_{1}^{k} t_{2}^{l} t_{3}^{m}
$$

This is an example of a Lauricella hypergeometric function of type F_{D}.

The hypergeometric connection

Consider the following period of the general genus 2 curve

$$
\begin{gathered}
y^{2}=x(1-x)\left(1-t_{1} x\right)\left(1-t_{2} x\right)\left(1-t_{3} x\right) \\
\frac{1}{\pi} \int_{0}^{1} \frac{d x}{\sqrt{x(1-x)\left(1-t_{1} x\right)\left(1-t_{2} x\right)\left(1-t_{3} x\right)}}
\end{gathered}
$$

Expand in powers of t_{1}, t_{2}, t_{3}.

$$
\sum_{k, l, m \geq 0} \frac{(1 / 2)_{k}(1 / 2)_{\iota}(1 / 2)_{m}(1 / 2)_{k+l+m}}{k!/!m!(k+l+m)!} t_{1}^{k} t_{2}^{l} t_{3}^{m}
$$

This is an example of a Lauricella hypergeometric function of type F_{D}.
Krammer's equation is obtained by replacing t_{i} by suitable rational functions $t_{i}(z) \in \overline{\mathbb{Q}}(z)$

Appell's functions

Some two variable hypergeometric functions.

$$
\begin{aligned}
F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m+n}} x^{m} y^{n} \\
F_{2}\left(\alpha, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m}\left(\gamma^{\prime}\right)_{n}} x^{m} y^{n} \\
F_{3}\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m}(\alpha)_{n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m+n}} x^{m} y^{n} \\
F_{4}\left(\alpha, \beta, \gamma, \gamma^{\prime}, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m+n}(\beta)_{m+n}}{m!n!(\gamma)_{m}\left(\gamma^{\prime}\right)_{n}} x^{m} y^{n}
\end{aligned}
$$

Constructing G-functions

- Start with a hypergeometric equation system in several variables with parameter space $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Constructing G-functions

- Start with a hypergeometric equation system in several variables with parameter space $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Take a rational curve C in X and restrict the system to this curve. Take a weak pullback $D \rightarrow C$ if you want.

Constructing G-functions

- Start with a hypergeometric equation system in several variables with parameter space $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Take a rational curve C in X and restrict the system to this curve. Take a weak pullback $D \rightarrow C$ if you want.
- The resulting system can be rewritten as an ordinary differential equation with a G-function solution.

Constructing G-functions

- Start with a hypergeometric equation system in several variables with parameter space $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Take a rational curve C in X and restrict the system to this curve. Take a weak pullback $D \rightarrow C$ if you want.
- The resulting system can be rewritten as an ordinary differential equation with a G-function solution.

Question

Does every second order equation which is a minimal equation of a G-function arise in this way? (possibly as a factor)

