Lecture 4

Frits Beukers

Arithmetic of values of E- and G-function

Two theorems

Theorem, G.Chudnovsky 1984

The minimal differential equation of a G-function is Fuchsian.

Theorem, Y.André 2000

Let f(z) be an E-function. Then f(z) satisfies a differential equation of the form

$$z^m y^{(m)} + \sum_{k=0}^{m-1} q_k(z) y^{(k)} = 0$$

where $q_k(z) \in \overline{\mathbb{Q}}[z]$ for all k.

Proposition

Let a₀, a₁, a₂,... ∈ Q. Then the following are equivalent
f(z) = ∑_{k≥0} a_k z^k/k! is an E-function.
g(z) = ∑_{k>0} a_k z^k is a G-function.

Proposition

Let $a_0, a_1, a_2, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent **1** $f(z) = \sum_{k \ge 0} a_k \frac{z^k}{k!}$ is an E-function. **2** $g(z) = \sum_{k \ge 0} a_k z^k$ is a G-function.

We must show that f satisfies a linear differential equation if and only if g does.

Proposition

Let $a_0, a_1, a_2, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent **1** $f(z) = \sum_{k \ge 0} a_k \frac{z^k}{k!}$ is an E-function. **2** $g(z) = \sum_{k \ge 0} a_k z^k$ is a G-function.

We must show that f satisfies a linear differential equation if and only if g does.

The function g is a formal Laplace transform of f, more precisely

$$\int_0^\infty e^{-xz} f(z) dz = \frac{1}{x} g(\frac{1}{x}).$$

Proposition

Let $a_0, a_1, a_2, \ldots \in \overline{\mathbb{Q}}$. Then the following are equivalent • $f(z) = \sum_{k \ge 0} a_k \frac{z^k}{k!}$ is an E-function. • $g(z) = \sum_{k \ge 0} a_k z^k$ is a G-function.

We must show that f satisfies a linear differential equation if and only if g does.

The function g is a formal Laplace transform of f, more precisely

$$\int_0^\infty e^{-xz} f(z) dz = \frac{1}{x} g(\frac{1}{x}).$$

Recall

$$\int_0^\infty e^{-xz} \frac{z^k}{k!} dz = \frac{1}{x^{k+1}}.$$

Connection between DE's

For any non-negative integers k, m and repeated partial integration we can derive the equality

$$\int_0^\infty e^{-xz} \left(\frac{d}{dz}\right)^k z^m f(z) dz = x^k \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}).$$

Connection between DE's

For any non-negative integers k, m and repeated partial integration we can derive the equality

$$\int_0^\infty e^{-xz} \left(\frac{d}{dz}\right)^k z^m f(z) dz = x^k \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}).$$

Assume that g(x) is a G-function. Then g(x) satisfies a linear differential equation and so does $\frac{1}{x}g(\frac{1}{x})$. Assume

$$\sum_{m=0}^{M} G_m(x) \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}) = 0.$$

Connection between DE's

For any non-negative integers k, m and repeated partial integration we can derive the equality

$$\int_0^\infty e^{-xz} \left(\frac{d}{dz}\right)^k z^m f(z) dz = x^k \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}).$$

Assume that g(x) is a G-function. Then g(x) satisfies a linear differential equation and so does $\frac{1}{x}g(\frac{1}{x})$. Assume

$$\sum_{m=0}^{M} G_m(x) \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}) = 0.$$

Then, by our Laplace transform property,

$$0 = \int_0^\infty e^{-xz} \sum_{m=0}^M G_m\left(\frac{d^k}{dz^k}\right) z^m f(z) dz.$$

Hence

$$\sum_{m=0}^{M} G_m(x) \left(-\frac{d}{dx}\right)^m \frac{1}{x}g(\frac{1}{x}) = 0.$$

implies

$$\sum_{m=0}^{M} G_m\left(\frac{d^k}{dz^k}\right) z^m f(z) dz = 0.$$

and vice versa. So we are done.

Hence

$$\sum_{m=0}^{M} G_m(x) \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}) = 0.$$

implies

$$\sum_{m=0}^{M} G_m\left(\frac{d^k}{dz^k}\right) z^m f(z) dz = 0.$$

and vice versa. So we are done.

But there is more, the equation for g is Fuchsian. So deg_x(G_i(x)) < deg_x(G_m(x)) for all i < m.

Hence

$$\sum_{m=0}^{M} G_m(x) \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}) = 0.$$

implies

$$\sum_{m=0}^{M} G_m\left(\frac{d^k}{dz^k}\right) z^m f(z) dz = 0.$$

and vice versa. So we are done.

- But there is more, the equation for g is Fuchsian. So deg_x(G_i(x)) < deg_x(G_m(x)) for all i < m.
- The order of the equation for *f* becomes deg *G_m*. The coefficient of this highest derivative is *z^m*.

Hence

$$\sum_{m=0}^{M} G_m(x) \left(-\frac{d}{dx}\right)^m \frac{1}{x} g(\frac{1}{x}) = 0.$$

implies

$$\sum_{m=0}^{M} G_m\left(\frac{d^k}{dz^k}\right) z^m f(z) dz = 0.$$

and vice versa. So we are done.

- But there is more, the equation for g is Fuchsian. So deg_x(G_i(x)) < deg_x(G_m(x)) for all i < m.
- The order of the equation for *f* becomes deg *G_m*. The coefficient of this highest derivative is *z^m*.
- This proves André's theorem stating that an E-function satisfies an equation with only singularity at *z* = 0.

Recall

Theorem

The minimal differential equation of a G-function is Fuchsian.

Recall

Theorem

The minimal differential equation of a G-function is Fuchsian.

Unfortunately the converse is not true.

Recall

Theorem

The minimal differential equation of a G-function is Fuchsian.

Unfortunately the converse is not true. Consider

 $z(z^{2}+11z-1)y''+(3z^{2}+22z-1)y'+(z+\lambda)y=0$

and let $y_{\lambda}(z) = \sum_{k \ge 0} u_k z^k$ be a solution.

Recall

Theorem

The minimal differential equation of a G-function is Fuchsian.

Unfortunately the converse is not true. Consider

 $z(z^{2} + 11z - 1)y'' + (3z^{2} + 22z - 1)y' + (z + \lambda)y = 0$ and let $y_{\lambda}(z) = \sum_{k \ge 0} u_{k}z^{k}$ be a solution. Then $(k+1)^{2}u_{k+1} = (11k(k+1) + \lambda)u_{k} + k^{2}u_{k-1} \quad k \ge 1.$ Taking $u_{0} = 1$ we get $u_{1} = \lambda$.

Recall

Theorem

The minimal differential equation of a G-function is Fuchsian.

Unfortunately the converse is not true. Consider

$$z(z^{2} + 11z - 1)y'' + (3z^{2} + 22z - 1)y' + (z + \lambda)y = 0$$

and let $y_{\lambda}(z) = \sum_{k \ge 0} u_k z^k$ be a solution. Then

$$(k+1)^2 u_{k+1} = (11k(k+1) + \lambda)u_k + k^2 u_{k-1} \quad k \ge 1$$

Taking $u_0 = 1$ we get $u_1 = \lambda$.

Question

For which $\lambda \in \overline{\mathbb{Q}}$ is $\sum_{k>0} u_k z^k$ a G-function?

Some values of λ

Consider $u_0 = 1$, $u_1 = \lambda$ and

 $(k+1)^2 u_{k+1} = (11k(k+1) + \lambda)u_k + k^2 u_{k-1} \quad k \ge 1$

Some values of λ

Consider $u_0 = 1$, $u_1 = \lambda$ and $(k+1)^2 u_{k+1} = (11k(k+1) + \lambda)u_k + k^2 u_{k-1} \quad k \ge 1$ Take $\lambda = 0$, then we get the sequence $1, 0, \frac{1}{4}, \frac{11}{6}, \frac{977}{64}, \frac{162613}{1200},$ $\frac{14432069}{11520}, \frac{5603179109}{470400}, \frac{2983229567887}{25804800}, \dots$

Some values of λ

Consider $u_0 = 1$, $u_1 = \lambda$ and $(k+1)^2 u_{k+1} = (11k(k+1) + \lambda)u_k + k^2 u_{k-1} \quad k \ge 1$ Take $\lambda = 0$, then we get the sequence $1, 0, \frac{1}{4}, \frac{11}{6}, \frac{977}{64}, \frac{162613}{1200},$ 14432069 5603179109 2983229567887 11520, 470400, 25804800, ... Take $\lambda = 3$, then we get

1, 3, 19, 147, 1251, 11253, 104959, 1004307,

9793891, 96918753, 970336269, . . .

A conjecture

Conjecture

Let
$$u(z) = \sum_{k>0} u_k z^k$$
 and $u_0 = 1$, $u_1 = \lambda \in \overline{\mathbb{Q}}$ and

$$(k+1)^2 u_{k+1} = (11k(k+1) + \lambda)u_k + k^2 u_{k-1} \quad k \ge 1.$$

Then u(z) is a G-function if and only if $\lambda = 3$.

Proposition, FB 1999

The following are equivalent

• $\lambda \in \mathbb{Q}$ and u_k 3-adically integral for all k.

•
$$\lambda = 3$$
.

Proof of the Proposition

Let $\lambda \in \mathbb{Q}_3^{\text{unram}}$, the maximal unramified extension of \mathbb{Q}_3 . Consider the corresponding recurrence and generating function $u_{\lambda}(z)$.

Theorem FB, 1998

Let $f_1 = 1 + z^2$, $f_2 = 1 + (1 + i)z - z^2$, $f_3 = 1 + (1 - i)z - z^2$. Suppose $u_\lambda \in \mathbb{Z}_3^{\text{unram}}[[z]]$. Then there exists an infinite sequence i_1, i_2, \ldots with $i_j \in \{1, 2, 3\}$ such that

$$u_{\lambda}(z) \equiv f_{i_1}(z)f_{i_2}(z)^3f_{i_3}(z)^{3^2}\cdots \pmod{3}.$$

Moreover this gives a 1-1 correspondence.

Proof of the Proposition

Let $\lambda \in \mathbb{Q}_3^{\text{unram}}$, the maximal unramified extension of \mathbb{Q}_3 . Consider the corresponding recurrence and generating function $u_{\lambda}(z)$.

Theorem FB, 1998

Let $f_1 = 1 + z^2$, $f_2 = 1 + (1 + i)z - z^2$, $f_3 = 1 + (1 - i)z - z^2$. Suppose $u_\lambda \in \mathbb{Z}_3^{\text{unram}}[[z]]$. Then there exists an infinite sequence i_1, i_2, \ldots with $i_j \in \{1, 2, 3\}$ such that

$$u_{\lambda}(z) \equiv f_{i_1}(z)f_{i_2}(z)^3f_{i_3}(z)^{3^2}\cdots \pmod{3}.$$

Moreover this gives a 1-1 correspondence.

If we want $u_{\lambda} \in \mathbb{Z}[[z]]$ then we must have $i_j = 1$ for all j. Hence, by the 1-1 correspondence, there is precisely one solution with $u_{\lambda} \in \mathbb{Z}_3[[z]]$. Since we know that $u_3 \in \mathbb{Z}[[z]]$ this must be our solution.

 Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_z. We assume everything defined over Q. Take a continuous family of suitable cycles γ_z and consider the integral

$$w(z) = \int_{\gamma_z} \Omega_z$$

 Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_z. We assume everything defined over Q. Take a continuous family of suitable cycles γ_z and consider the integral

$$w(z) = \int_{\gamma_z} \Omega_z$$

• It is known that w(z) satifies a linear differential equation, the so-called Picard-Fuchs equation of the family.

 Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_z. We assume everything defined over Q. Take a continuous family of suitable cycles γ_z and consider the integral

$$w(z) = \int_{\gamma_z} \Omega_z.$$

- It is known that w(z) satifies a linear differential equation, the so-called Picard-Fuchs equation of the family.
- By a theorem of N.Katz w(z) a Piard-Fuchs equation has G-function solutions.

 Consider a family of algebraic varieties parametrised by z and consider a relative differential r-form Ω_z. We assume everything defined over Q. Take a continuous family of suitable cycles γ_z and consider the integral

$$w(z) = \int_{\gamma_z} \Omega_z.$$

- It is known that w(z) satifies a linear differential equation, the so-called Picard-Fuchs equation of the family.
- By a theorem of N.Katz w(z) a Piard-Fuchs equation has G-function solutions.
- We say that a differential equation 'comes from geometry' if it a (factor of a) Picard-Fuchs equation.

The main conjecture

Conjecture, Bombieri-Dwork

The minimal differential equation of a G-function comes from geometry.

An experiment by Zagier

• Consider the recurrence

$$(k+1)^2 u_{k+1} = (An(n+1) + \lambda)u_k + Bk^2 u_{k-1}$$

for many choices of $A, B, \lambda, u_0, u_1 \in \mathbb{Z}$. Verify integrality of u_k for $k \leq 20$, say.

An experiment by Zagier

• Consider the recurrence

$$(k+1)^2 u_{k+1} = (An(n+1) + \lambda)u_k + Bk^2 u_{k-1}$$

for many choices of $A, B, \lambda, u_0, u_1 \in \mathbb{Z}$. Verify integrality of u_k for $k \leq 20$, say.

• There are essentially 7 different finds with $B(B^2 - 4A) \neq 0$.

A	В	λ
0	16	0
7	8	2
9	-27	3
10	-9	3
11	1	3
12	-32	4
17	-72	6

Beauville's list

Theorem, A.Beauville, 1982

Up to isomorphism there exist precisely 6 families of elliptic curves over \mathbb{P}^1 which have 4 singular fibers with multiplicative reduction.

Beauville's list

Theorem, A.Beauville, 1982

Up to isomorphism there exist precisely 6 families of elliptic curves over \mathbb{P}^1 which have 4 singular fibers with multiplicative reduction.

All of the above differential differential equations occur as Picard-Fuchs equation for one of the families in Beauville's list.

Explicit equations and solutions

$$(z^3 - z)y'' + (3z^2 - 1)y' + zy = 0$$

Solution:

$$b(z)^{1/4} {}_2F_1\left(\begin{array}{c} 1/12 \ 5/12 \\ 1 \end{array} \middle| \frac{27z^4(1-z^2)^2}{4b(z)^3} \right)$$

where $b(z) = 1 - z^2 + z^4/16$.

$$z(z-1)(8z+1)y'' + (24z^2 - 14z - 1)y' + (8z-2)y = 0$$

Solution:

$$b(z)^{1/4} {}_2F_1\left(\begin{array}{c} 1/12 \ 5/12 \\ 1 \end{array} \left| rac{1728z^6(z-1)^2(1+8z)}{b(z)^3}
ight)
ight)$$

where $b(z) = 1 + 8z - 16z^3 + 16z^4$.

Explicit equations and solutions, continued

$$z(z^2 + 11z - 1)y'' + (3z^2 + 22z - 1)y' + (z + 3)y = 0$$

Solution:

$$b(z)^{1/4} {}_2F_1\left(\begin{array}{c} 1/12 \ 5/12 \\ 1 \end{array} \left| \begin{array}{c} \frac{1728z^5(1-11z-z^2)}{b(z)^3} \end{array} \right) \right)$$

where $b(z) = 1 - 12z + 14z^2 + 12z^3 + z^4$.

$$z(3z^2 - 3z + 1)y'' + (3z - 1)^2y' + (3z - 1)y = 0$$

Solution:

$$b(z)^{1/4}{}_{2}F_{1}\left(\begin{array}{c}1/12\ 5/12\\1\end{array}\right|\frac{-64z^{3}(1-3z+3z^{2})^{3}}{b(z)^{3}}\right)$$

where $b(z) = (1 - z)(1 - 3z + 3z^2 - 9z^3)$

Projective equivalence and pull-back

Consider two linear differential equations of order 2, $L_1y = 0$ and $L_2y = 0$, with coefficients in $\mathbb{C}(z)$.

Projective equivalence and pull-back

Consider two linear differential equations of order 2, $L_1y = 0$ and $L_2y = 0$, with coefficients in $\mathbb{C}(z)$.

We say that they are projectively equivalent if there exists a fractional power of a rational function R(z)^{1/m} such that L₂ = L₁ ∘ R(z)^{1/m}.

Projective equivalence and pull-back

Consider two linear differential equations of order 2, $L_1y = 0$ and $L_2y = 0$, with coefficients in $\mathbb{C}(z)$.

- We say that they are projectively equivalent if there exists a fractional power of a rational function R(z)^{1/m} such that L₂ = L₁ ∘ R(z)^{1/m}.
- We say that L₂ is a rational pullback of L₁ if there exists a rational function S(z) such that the solutions of L₂y = 0 are given by y(S(z)) where y runs through the solutions of L₁y = 0.

Projective equivalence and pull-back

Consider two linear differential equations of order 2, $L_1y = 0$ and $L_2y = 0$, with coefficients in $\mathbb{C}(z)$.

- We say that they are projectively equivalent if there exists a fractional power of a rational function R(z)^{1/m} such that L₂ = L₁ ∘ R(z)^{1/m}.
- We say that L₂ is a rational pullback of L₁ if there exists a rational function S(z) such that the solutions of L₂y = 0 are given by y(S(z)) where y runs through the solutions of L₁y = 0.
- We say that L₂ is weak (rational) pullback of L₁ if it is projectively equivalent to a rationalpull back of L₁.

A conjecture by Dwork

Example, let $u_k = \sum_{r=0}^k {\binom{k}{r}}^2 {\binom{k+r}{r}}$ be the sequence of Apéry numbers and $u(z) = \sum_{k>0} u_k z^k$. Then from

$$u(z) = b(z)^{1/4} {}_2F_1\left(\begin{array}{c} 1/12 \ 5/12 \\ 1 \end{array} \middle| \frac{1728z^5(1-11z-z^2)}{b(z)^3} \right)$$

with $b(z) = 1 - 12z + 14z^2 + 12z^3 + z^4$ it follows that the equation

$$(z2 + 11z - 1)y'' + (3z2 + 22z - 1)y' + (z + 3)y = 0$$

is a weak pullback of the differential equation for ${}_2F_1(1/12, 5/12, 1|z)$.

A conjecture by Dwork

Example, let $u_k = \sum_{r=0}^k {\binom{k}{r}}^2 {\binom{k+r}{r}}$ be the sequence of Apéry numbers and $u(z) = \sum_{k\geq 0} u_k z^k$. Then from

$$u(z) = b(z)^{1/4} {}_2F_1\left(\begin{array}{c} 1/12 \ 5/12 \\ 1 \end{array} \middle| \frac{1728z^5(1-11z-z^2)}{b(z)^3} \right)$$

with $b(z) = 1 - 12z + 14z^2 + 12z^3 + z^4$ it follows that the equation

$$(z2 + 11z - 1)y'' + (3z2 + 22z - 1)y' + (z + 3)y = 0$$

is a weak pullback of the differential equation for ${}_2F_1(1/12, 5/12, 1|z)$.

Conjecture, Dwork

An irreducible second order linear differential equation which has a G-function solution is a weak pullback of Gaussian hypergeometric function.

A counterexample

Theorem, D.Krammer 1988

The differential equation

$$P(x)f'' + rac{1}{2}P'(x)f' + rac{x-9}{18}f = 0,$$

where P(x) = x(x-1)(x-81) has a G-function solution but is *not* a weak pullback of a Gaussian hypergeometric function.

A counterexample

Theorem, D.Krammer 1988

The differential equation

$$P(x)f'' + \frac{1}{2}P'(x)f' + \frac{x-9}{18}f = 0,$$

where P(x) = x(x-1)(x-81) has a G-function solution but is *not* a weak pullback of a Gaussian hypergeometric function.

This equation, and several similar ones, occur in a paper by G.Chudnovsky.

Consider a Fuchsian second order linear differential equation with singular point set *S*. Choose z_0 outside *S* and let y_1, y_2 be a basis of solutions.

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_0 outside S and let y_1, y_2 be a basis of solutions.

• Take a closed contour γ beginning and ending in z_0 and continue y_1, y_2 analytically along γ .

Consider a Fuchsian second order linear differential equation with singular point set *S*. Choose z_0 outside *S* and let y_1, y_2 be a basis of solutions.

- Take a closed contour γ beginning and ending in z_0 and continue y_1, y_2 analytically along γ .
- We end with two continued solutions y
 ₁, y
 ₂. They should be linear combinations of y₁, y₂ with constant coefficients.

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_0 outside S and let y_1, y_2 be a basis of solutions.

- Take a closed contour γ beginning and ending in z_0 and continue y_1, y_2 analytically along γ .
- We end with two continued solutions y
 ₁, y
 ₂. They should be linear combinations of y₁, y₂ with constant coefficients.
- Thus we get a matrix $M_{\gamma} \in GL(2,\mathbb{C})$ such that

$$\begin{pmatrix} \tilde{y}_1\\ \tilde{y}_2 \end{pmatrix} = M_\gamma \begin{pmatrix} y_1\\ y_2 \end{pmatrix}$$

Consider a Fuchsian second order linear differential equation with singular point set S. Choose z_0 outside S and let y_1, y_2 be a basis of solutions.

- Take a closed contour γ beginning and ending in z_0 and continue y_1, y_2 analytically along γ .
- We end with two continued solutions y
 ₁, y
 ₂. They should be linear combinations of y₁, y₂ with constant coefficients.
- Thus we get a matrix $M_{\gamma} \in GL(2,\mathbb{C})$ such that

$$\begin{pmatrix} \tilde{y}_1\\ \tilde{y}_2 \end{pmatrix} = M_\gamma \begin{pmatrix} y_1\\ y_2 \end{pmatrix}$$

 M_γ depends only on the class γ ∈ π₁(ℙ¹ \ S, z₀) and the map γ ↦ M_γ gives a representation γ ∈ π₁(ℙ¹ \ S, z₀) → GL(2, ℂ), the monodromy representation. The image is called monodromy group.

Monodromy, continued

Suppose S = {s₁,..., s_r, ∞}. Then the monodromy group is generated by the simple loops γ_i around the s_i. Moreover, γ₁ ∘ · · · ∘ γ_r ∘ γ_∞ = 1.

The differential equation for the hypergeometric function ${}_2F_1(\alpha,\beta,\gamma|z)$ reads

 $z(z-1)F'' + ((\alpha + \beta + 1)z - \gamma)F' + \alpha\beta F = 0$

The differential equation for the hypergeometric function ${}_2F_1(\alpha,\beta,\gamma|z)$ reads

 $z(z-1)F'' + ((\alpha + \beta + 1)z - \gamma)F' + \alpha\beta F = 0$

Suppose α, β, γ ∈ Q. The the equation is Fuchsian with three singularities 0, 1, ∞. Let M₀, M₁, M_∞ be the corresponding monodromy matrices.

The differential equation for the hypergeometric function ${}_2F_1(\alpha,\beta,\gamma|z)$ reads

 $z(z-1)F'' + ((\alpha + \beta + 1)z - \gamma)F' + \alpha\beta F = 0$

- Suppose α, β, γ ∈ Q. The the equation is Fuchsian with three singularities 0, 1, ∞. Let M₀, M₁, M_∞ be the corresponding monodromy matrices.
- The monodromy group is subgroup of $SL(2,\mathbb{R})$.

The differential equation for the hypergeometric function ${}_2F_1(\alpha,\beta,\gamma|z)$ reads

 $z(z-1)F'' + ((\alpha + \beta + 1)z - \gamma)F' + \alpha\beta F = 0$

- Suppose α, β, γ ∈ Q. The the equation is Fuchsian with three singularities 0, 1, ∞. Let M₀, M₁, M_∞ be the corresponding monodromy matrices.
- The monodromy group is subgroup of $SL(2,\mathbb{R})$.
- There exist $p, q, r \in \mathbb{Z}_{\geq 2}$, depending on α, β, γ , such that

$$M_0 M_1 M_\infty = 1, \quad M_0^p = 1, \quad M_1^q = 1, \quad M_\infty^r = 1.$$

This is a Coxeter group and image in $PGL(2, \mathbb{C})$ is a triangle group.

Let *a*, *b* be two primes.

Let *a*, *b* be two primes.

Consider the quaternion algebra Q of discrimant ab generated over Q by 1, i, j, k with the relations i² = a, j² = b, k = ij = −ji.

Let *a*, *b* be two primes.

- Consider the quaternion algebra Q of discrimant ab generated over Q by 1, i, j, k with the relations
 i² = a, j² = b, k = ij = −ji.
- Let 𝒪 be a maximal order in Q and let 𝒪¹ be the unit group of norm 1 elements.

Let *a*, *b* be two primes.

- Consider the quaternion algebra Q of discrimant ab generated over Q by 1, i, j, k with the relations
 i² = a, j² = b, k = ij = −ji.
- Let 𝒪 be a maximal order in Q and let 𝒪¹ be the unit group of norm 1 elements.
- We can represent Q in M₂(ℝ) and therefore O¹ is represented in SL(2, ℝ).

 The monodromy group *M* of Krammer's equation is a subgroup of *O*¹ corresponding to the quaternin algebra over Q of discriminant 15. In particular *M* is an arithmetic group.

- The monodromy group *M* of Krammer's equation is a subgroup of *O*¹ corresponding to the quaternin algebra over Q of discriminant 15. In particular *M* is an arithmetic group.
- Suppose Krammer's equation is a weak pullback of a hypergeometric equation. Then M is commensurable with a triangle group T. (This means that M ∩ T has finite index in both M and T)

- The monodromy group *M* of Krammer's equation is a subgroup of *O*¹ corresponding to the quaternin algebra over Q of discriminant 15. In particular *M* is an arithmetic group.
- Suppose Krammer's equation is a weak pullback of a hypergeometric equation. Then M is commensurable with a triangle group T. (This means that $M \cap T$ has finite index in both M and T)
- In the 1980's Takeuchi gave a list of arithmetic triangle groups

- The monodromy group *M* of Krammer's equation is a subgroup of *O*¹ corresponding to the quaternin algebra over Q of discriminant 15. In particular *M* is an arithmetic group.
- Suppose Krammer's equation is a weak pullback of a hypergeometric equation. Then M is commensurable with a triangle group T. (This means that $M \cap T$ has finite index in both M and T)
- In the 1980's Takeuchi gave a list of arithmetic triangle groups
- Discriminant 15 does not occur in his list. Contradiction.

• Let Q_{15} be the quaternion algebra of discriminant 15 and \mathcal{O}_{15} a maximal order.

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathcal{O}_{15} a maximal order.
- Consider the moduli space of genus 2 curves C whose Jacobian Jac(C) has an endomorphism ring equal to 𝒫₁₅.

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathcal{O}_{15} a maximal order.
- Consider the moduli space of genus 2 curves C whose Jacobian Jac(C) has an endomorphism ring equal to O₁₅.
- This is a one dimensional family parametrised by $z \in \mathbb{P}^1$, say.

- Let Q_{15} be the quaternion algebra of discriminant 15 and \mathcal{O}_{15} a maximal order.
- Consider the moduli space of genus 2 curves C whose Jacobian Jac(C) has an endomorphism ring equal to \$\mathcal{O}_{15}\$.
- This is a one dimensional family parametrised by $z \in \mathbb{P}^1$, say.
- Krammer's equation is the Picard-Fuchs equation for the periods of this family.

The hypergeometric connection

Consider the following period of the general genus 2 curve

$$y^2 = x(1-x)(1-t_1x)(1-t_2x)(1-t_3x),$$

$$\frac{1}{\pi}\int_0^1\frac{dx}{\sqrt{x(1-x)(1-t_1x)(1-t_2x)(1-t_3x)}}.$$

Expand in powers of t_1, t_2, t_3 .

$$\sum_{k,l,m\geq 0} \frac{(1/2)_k (1/2)_l (1/2)_m (1/2)_{k+l+m}}{k! l! m! (k+l+m)!} t_1^k t_2^l t_3^m$$

The hypergeometric connection

Consider the following period of the general genus 2 curve

$$y^{2} = x(1-x)(1-t_{1}x)(1-t_{2}x)(1-t_{3}x),$$

$$\frac{1}{\pi}\int_0^1\frac{dx}{\sqrt{x(1-x)(1-t_1x)(1-t_2x)(1-t_3x)}}.$$

Expand in powers of t_1, t_2, t_3 .

1

$$\sum_{\substack{k,l,m\geq 0}} \frac{(1/2)_k (1/2)_l (1/2)_m (1/2)_{k+l+m}}{k! l! m! (k+l+m)!} t_1^k t_2^l t_3^m$$

This is an example of a Lauricella hypergeometric function of type F_D .

The hypergeometric connection

Consider the following period of the general genus 2 curve

$$y^{2} = x(1-x)(1-t_{1}x)(1-t_{2}x)(1-t_{3}x),$$

$$\frac{1}{\pi}\int_0^1\frac{dx}{\sqrt{x(1-x)(1-t_1x)(1-t_2x)(1-t_3x)}}.$$

Expand in powers of t_1, t_2, t_3 .

$$\sum_{k,l,m\geq 0} \frac{(1/2)_k (1/2)_l (1/2)_m (1/2)_{k+l+m}}{k! l! m! (k+l+m)!} t_1^k t_2^l t_3^m$$

This is an example of a Lauricella hypergeometric function of type F_D . Krammer's equation is obtained by replacing t_i by suitable rational functions $t_i(z) \in \overline{\mathbb{Q}}(z)$

Appell's functions

Some two variable hypergeometric functions.

$$F_{1}(\alpha,\beta,\beta',\gamma,x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}(\beta')_{n}}{m!n!(\gamma)_{m+n}} x^{m}y^{n}$$

$$F_{2}(\alpha,\beta,\beta',\gamma,\gamma',x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}(\beta')_{n}}{m!n!(\gamma)_{m}(\gamma')_{n}} x^{m}y^{n}$$

$$F_{3}(\alpha,\alpha',\beta,\beta',\gamma,x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m}(\alpha)_{n}(\beta)_{m}(\beta')_{n}}{m!n!(\gamma)_{m+n}} x^{m}y^{n}$$

$$F_{4}(\alpha,\beta,\gamma,\gamma',x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m+n}(\beta)_{m+n}}{m!n!(\gamma)_{m}(\gamma')_{n}} x^{m}y^{n}$$

• Start with a hypergeometric equation system in several variables with parameter space $X = (x_1, x_2, ..., x_n)$.

- Start with a hypergeometric equation system in several variables with parameter space X = (x₁, x₂,...,x_n).
- Take a rational curve C in X and restrict the system to this curve. Take a weak pullback D → C if you want.

- Start with a hypergeometric equation system in several variables with parameter space X = (x₁, x₂,...,x_n).
- Take a rational curve C in X and restrict the system to this curve. Take a weak pullback D → C if you want.
- The resulting system can be rewritten as an ordinary differential equation with a G-function solution.

- Start with a hypergeometric equation system in several variables with parameter space X = (x₁, x₂,...,x_n).
- Take a rational curve C in X and restrict the system to this curve. Take a weak pullback D → C if you want.
- The resulting system can be rewritten as an ordinary differential equation with a G-function solution.

Question

Does every second order equation which is a minimal equation of a G-function arise in this way? (possibly as a factor)