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Things Familiar

Arithmetic objects from characteristic 0

@ The multiplicative group and exp(z)

@ Elliptic curves and elliptic functions
@ Abelian varieties
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The multiplicative group

We have the usual exact sequence of abelian groups
where

0—2riZ - C=®

C* —0,

o

oxp(2) = 3 5 < Q2]
i=0
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The multiplicative group

0—2riZ - C=®
where

—

C* —0,

exp(z) = Y 5 € QllZ])
i=0
Forany n € Z,

exp

C——=cC*

z»—>nzl i X=X
exp

C——=CX
which is simply a restatement of the functional equation

exp(nz) = exp(2)".
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Roots of unity

Torsion in the multiplicative group
The n-th roots of unity are defined by

pn:=4{¢eC*|¢"=1} = {exp(2rmia/n) |ac Z}
o Gal(Q(un)/Q) = (Z/nZ)*.

@ Kronecker-Weber Theorem: The cyclotomic fields Q(u) provide
explicit class field theory for Q.
@ For ¢ € up,

log(¢)

2ria
g T’

0<ax<n.
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Elliptic curves over C

Smooth projective algebraic curve of genus 1.

E:y?=4x+ax+b, abeC
E(C) has the structure of an abelian group through the usual
chord-tangent construction.
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Weierstrass uniformization

There exist wy, wo € C, linearly independent over R, so that if we
consider the lattice

N = Zwq + Zwo,
then the Weierstrass g-function is defined by

1 1 1
@) =32+ (= ap )
570
poles.

The function p(z) has double poles at each point in A and no other
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We obtain an exact sequence of abelian groups,
where

0—A—C ™5 E@C) -0,

expe(2) = (p(2), ¢'(2)).
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We obtain an exact sequence of abelian groups,
0—A—C ™5 E@C) -0,
where

expe(2) = (p(2), ¢'(2))-
Moreover, we have a commutative diagram

expge
C

iPH[n]P
C—£E(©)
where [n]P is the n-th multiple of a point P on the elliptic curve E

Z—nz
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Periods of E

How do we find wy and w»?

An elliptic curve E,

E:y?=4x®+ax+b,

a,beC,
has the geometric structure of a torus in P?(C). Let

Y1,72 € Hi(E, Z)
be generators of the homology of E.
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Periods of E

How do we find wy and w»?

An elliptic curve E,

E:y?=4x®+ax+b,

a,beC,
has the geometric structure of a torus in P?(C). Let

Y1,72 € Hi(E, Z)
be generators of the homology of E.

Then we can choose

/ \/—dx /
wy = ; w2
W V4x3 +ax+b v

ax
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Quasi-periods of E

@ The differential dx/y on E generates the space of holomorphic
1-forms on E (differentials of the first kind).

@ The differential x dx/y generates the space of differentials of the
second kind (differentials with poles but residues of 0).
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Quasi-periods of E

@ The differential dx/y on E generates the space of holomorphic
1-forms on E (differentials of the first kind).

@ The differential x dx/y generates the space of differentials of the
second kind (differentials with poles but residues of 0).

@ We set

_/ X dx _/ X dx
" Vadiraxib ® J,Vadiraxib

and 7, 1o are called the quasi-periods of E.

@ 1)1, 12 arise simultaneously as special values of the Weierstrass
¢-function and as periods of extensions of E by G,.
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Period matrix of E

@ The period matrix of E is the matrix

p_ [w 771] .
w2 12
It provides a natural isomorphism

H1

sing

(E,C) = H{R(E,C).
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Period matrix of E

@ The period matrix of E is the matrix

Pl ]

w2 12
It provides a natural isomorphism

H;ing(Ea (C) = H]1)R(E7 C)
@ Legendre Relation: From properties of elliptic functions, the
determinant of P is

wiNe — wony = +2mi.
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Abelian varieties

Higher dimensional analogues of elliptic curves

also a group variety.

@ An abelian variety A over C is a smooth projective variety that is

@ Elliptic curves are abelian varieties of dimension 1.

AWS 2008 (Lecture 1)

Function Field Transcendence



Abelian varieties
Higher dimensional analogues of elliptic curves

@ An abelian variety A over C is a smooth projective variety that is
also a group variety.

@ Elliptic curves are abelian varieties of dimension 1.

@ Much like for G, and elliptic curves, an abelian variety of
dimension d has a uniformization,

c? / A= A(C),

where A is a discrete lattice of rank 24d.
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The period matrix of an abelian variety

Let A be an abelian variety over C of dimension d.

H1

@ As in the case of elliptic curves, there is a natural isomorphism,
sing

(A7 (C) = H]1)R(A7 C)7
defined by period integrals, whose defining matrix P is called the
period matrix of A.
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The period matrix of an abelian variety

Let A be an abelian variety over C of dimension d.

@ As in the case of elliptic curves, there is a natural isomorphism,
Hiing(A, C) = Hx (A, C),

defined by period integrals, whose defining matrix P is called the
period matrix of A.

@ We have
P= [w,-j

Th’j] € Matyq(C),

where 1 <j<2d,1<j<d.
@ The wj's provide coordinates for the period lattice A.
@ The n;’s provide periods of extensions of A by G,.
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Things Less Familiar

Transcendence in characteristic 0

@ Theorems of Hermite-Lindemann and Gelfond-Schneider

@ Schneider’s theorems on elliptic functions

@ Linear independence results

@ Grothendieck’s conjecture
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Transcendence from G,

Theorem (Hermite-Lindemann 1870’s, 1880’s)

Leta € Q, a # 0. Then exp(«) is transcendental over Q
Examples

Each of the following is transcendental:

e C (0421)
T (v = 2mri)
e log2 (a=Ilog2)
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Hilbert’s Seventh Problem

Theorem (Gelfond-Schneider 1930’s)
Leta, 3 € Q, witha # 0,1 and 3 ¢ Q. Then o is transcendental.

Examples

Each of the following is transcendental:

e 2V2  (a=2 8=12)
(

e =17
092 (3185
log 3 (3 ? 2)

u]
@
I
l
it
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Periods and quasi-periods of elliptic curves

Theorem (Schneider 1930’s)
Let E be an elliptic curve defined over Q,

E:y’°=x*+ax+b, abeQ.

@ The periods and quasi-periods of E,
W1, w2, M1, 12

are transcendental.

@ LetT = wy/wo. Then either Q(7)/Q is an imaginary quadratic
extension (CM) or a purely transcendental extension (non-CM).
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Linear independence
Linear forms in logarithms
Theorem (Baker 1960’s)

Let oy, .
over Q, then

1,log(a1),. .., log(am)
are linearly independent over Q.

..,am € Q. Iflog(aq),...,log(am) are linearly independent

@ Extension of the Gelfond-Schneider theorem (m = 2).

@ Work of Bertrand, Masser, Waldschmidt, Wistholz (1970’s,
1980’s) extended this result to elliptic and abelian integrals.
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Linear independence

Linear forms in logarithms
Theorem (Baker 1960’s)

Letay,...,am € Q. Iflog(cy), ..., log(am) are linearly independent
over Q, then

1,log(a1),. .., log(am)
are linearly independent over Q.

@ Extension of the Gelfond-Schneider theorem (m = 2).

@ Work of Bertrand, Masser, Waldschmidt, Wistholz (1970’s,
1980’s) extended this result to elliptic and abelian integrals.

Conjecture (Gelfond/Folklore)

Letay,...,am € Q. Iflog(ay),...,log(am) are linearly independent
over Q, then they are algebraically independent over Q.
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Grothendieck’s conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over Q. Then

tr. deg(Q(P)/Q) = dimMT(A),
where MT(A) C GLoy /Q is the Mumford-Tate group of A.
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Grothendieck’s conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over Q. Then
tr. deg(Q(P)/Q) = dimMT(A),

where MT(A) C GLoy /Q is the Mumford-Tate group of A.

Let A be an elliptic curve.
@ One can show

4 if End(A) = Z,

dim MT(4) = {2 if End(A) # 7.

@ (G. Chudnovsky, 1970’s) If End(A) # Z, then Grothendieck’s
conjecture is true.
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Things Less Less Familiar

@ Function fields

@ Drinfeld modules

» The Carlitz module

» Drinfeld modules of rank 2

@ f-modules (higher dimensional Drinfeld modules)
@ Transcendence results
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Function fields

Let p be a fixed prime; q a fixed power of p.

A= TFq[6] —
k i=Tq(0) -
R <
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Twisted polynomials

@ Let F: Co — C4 be the g-th power Frobenius map: F(x) = x9.
Kis

@ For a subfield Fq € K C C, the ring of twisted polynomials over

K[F] = polynomials in F with coefficients in K,
subject to the conditions

Fc=ciF, VceK.
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Twisted polynomials

@ Let F: C, — C4 be the g-th power Frobenius map: F(x) = x9.
@ For a subfield F; C K C C, the ring of twisted polynomials over

Kis
K[F] = polynomials in F with coefficients in K,

subject to the conditions
Fc=ciF, VceK.
@ In this way,
K[F] = {F4-linear endomorphisms of K*}.
Forx e Kand ¢ = ay + a1F + --- a,F" € K[F], we write

d(x) = apx + ayx9+ - + ax9.
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Drinfeld modules
Function field analogues of G, and elliptic curves
Let F4[f] be a polynomial ring in t over F.
Definition
A Drinfeld module over is an IF4-algebra homomorphism,

p: Fqlt] = Coo[F],
such that

p(t)y=0+a1F+---aF".
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Drinfeld modules

Function field analogues of G, and elliptic curves
Let F4[f] be a polynomial ring in t over F.

Definition
A Drinfeld module over is an IF4-algebra homomorphism,
p: Folt] = Coo[F],

such that
p(t)y=0+a1F+---aF".

@ p makes C, into a F4[t]-module in the following way:
fsx = p(f)(x), VFfeTFqyt],x € Cu.

@ Ifay,...,a € KC Cy, we say pis defined over K.
@ ris called the rank of p.
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The Carlitz module

The analogue of G

We define a Drinfeld module C : Fq[t] — C[F] by

C(t)y:=0+F.
Thus, for any x € C,

C(t)(x) = 6x + x9.
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Carlitz exponential

We set
z9
ex =z+ : —
Po(2 Z (09 — 0)(09 — 09)--- (09 — 97 )
@ expc : C, — C is entire, surjective, and Fq-linear
@ Functional equation:

expq(0z) = 0 expp(2) + expeo(z)?
expc(f(0)z) =

(H(expe(2)),  VI(t) € Fqlt]
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Carlitz uniformization and the Carlitz period
We have a commutative diagram of F4[f]-modules,

Coo P Coo

ZF+02l

lXHﬁx+xq
expc
Coo —>C
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of Fg[t]-modules,

eXpc

Coo —=C
Zkﬁgzl

lx»—>0x+xq
Coo SXPc_ Coo

The kernel of exp(2) is

where

ker(expg(2)) = Fg[f]mq,

T (P
wq_eqmgo o'
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Wade’s result

Thus we have an exact sequence of F4[f]-modules,

0 — Fq[f]mg — Cx e Co — 0.
Theorem (Wade 1941)

The Carlitz period 74 is transcendental over k.
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Drinfeld modules of rank 2
k by

p(t) = 0+ kF + \F2.

@ Suppose p : Fg[t] — k[F] is a rank 2 Drinfeld module defined over
@ Then there is an unique, entire, Fg-linear function

exp,, : Coo — Cpp,
so that
exp,(f(0)z) = p(f)(exp,(2)),

Vf € Fqlt].
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Periods of Drinfeld modules of rank 2

@ Furthermore, there are wq, ws € C4, so that

ker(exp,(2)) = Fq[flw1 + Fq[flwz =: A,
where A is a discrete Fg4[f]-submodule of C of rank 2.
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Periods of Drinfeld modules of rank 2

@ Furthermore, there are w4, wo € C4, so that
ker(exp,(2)) = Fq[flw1 + Fq[flwz =: A,

where A is a discrete Fg4[f]-submodule of C of rank 2.
@ Chicken vs. Egg:

exp,(2) =2z [] ( )

0#£weN

@ Again we have a uniformizing exact sequence of Fq[t]-modules

0—-AN—Cyx C — 0.
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Transcendence resulis for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods 71, 17, € C, for p
with the following properties (see notes):
@ 1)1, 12 arise as periods of extensions of p by Gg.

@ Legendre relation: wyn, — wany = (g for some ¢ € Fy.
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Transcendence resulis for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods 71, 7o € C, for p
with the following properties (see notes):

@ 1)1, 12 arise as periods of extensions of p by Gg.
@ Legendre relation: wyn, — wany = (g for some ¢ € Fy.

Theorem (Yu 1980’s)

For a Drinfeld module p of rank 2 defined over k, the four quantities

Wi,wW2,M1, 72

are transcendental over k.
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t-modules

Higher dimensional Drinfeld modules
@ A t-module A of dimension d is an Fg-linear homomorphism,
A Fg[t] — Endr,(CL) = Maty(Cu[F]),
such that
A(t)=01d+ N + agF + - -- a,F",
where N € Maty(Cy) is nilpotent.
@ Thus CZ is given the structure of an Fg4[t]-module via
fxx:=A(f)(x), VFfeTg[t], xeCZ.
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Exponential functions of t-modules

@ There is a unique entire exp, : C¢ — C% so that
expa((01d + N)z) = A(t)(expa(2)).
@ If exp, is surjective, we have an exact sequence
0—A—cCd rcd o,

where A is a discrete Fg[t]-submodule of CZ.
@ Ais called the period lattice of A.
@ Quasi-periods can also be defined (see notes).
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Yu’s Theorem of the Sub-t-module

Analogue of Wiistholz’s Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over k. Suppose u € C,
satisfies exp,(u) € k. Then the smallest vector space H C C9,
defined over k which is invariant under §1d + N and which contains u
has the property that

expa(H) € A(Cw),

is a sub-t-module of A.
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Yu’s Theorem of the Sub-t-module

Analogue of Wistholz’s Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over k. Suppose u € CZ,

satisfies exp,(u) € k. Then the smallest vector space H C C9,
defined over k which is invariant under 61d + N and which contains u
has the property that

expa(H) € A(Cw),
is a sub-t-module of A.

Theorem (Yu 1997 (Linear independence of Carlitz logarithms))

Suppose ay, . ..,am € k. Iflogg(a), . . .,logc(am) € Co are linearly
independent over k = [Fq(6), then

1,l0gc(v1), ..., 10gc(am)

are linearly independent over k.

v
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