Transcendence in Positive Characteristic Introduction to Function Field Transcendence

W. Dale Brownawell Matthew Papanikolas

> Penn State University Texas A&M University

Arizona Winter School 2008 March 15, 2008

TH 16

3 1 4 3

Things Familiar

Arithmetic objects from characteristic 0

- The multiplicative group and exp(z)
- Elliptic curves and elliptic functions
- Abelian varieties

4 6 1 1 4

The multiplicative group

We have the usual exact sequence of abelian groups

$$0
ightarrow 2\pi i \mathbb{Z}
ightarrow \mathbb{C} \stackrel{exp}{
ightarrow} \mathbb{C}^{ imes}
ightarrow 0$$
,

where

$$\exp(z) = \sum_{i=0}^{\infty} \frac{z^i}{i!} \in \mathbb{Q}[[z]].$$

< 🗇 > < 🖻

The multiplicative group

We have the usual exact sequence of abelian groups

$$0
ightarrow 2\pi i \mathbb{Z}
ightarrow \mathbb{C} \stackrel{exp}{
ightarrow} \mathbb{C}^{ imes}
ightarrow 0$$
,

where

$$\exp(z) = \sum_{i=0}^{\infty} rac{z^i}{i!} \in \mathbb{Q}[[z]].$$

For any $n \in \mathbb{Z}$,

which is simply a restatement of the functional equation

$$\exp(nz)=\exp(z)^n.$$

Roots of unity

Torsion in the multiplicative group

The *n*-th roots of unity are defined by

$$\mu_n := \left\{ \zeta \in \mathbb{C}^{\times} \mid \zeta^n = 1 \right\} = \left\{ \exp\left(2\pi i a/n\right) \mid a \in \mathbb{Z} \right\}$$

•
$$\operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

- Kronecker-Weber Theorem: The cyclotomic fields Q(μ_n) provide explicit class field theory for Q.
- For $\zeta \in \mu_n$,

$$\log(\zeta) = \frac{2\pi i a}{n}, \quad 0 \le a < n.$$

< ロト < 同ト < ヨト < ヨト

Smooth projective algebraic curve of genus 1.

$$E: y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C}$$

 $E(\mathbb{C})$ has the structure of an abelian group through the usual chord-tangent construction.

3 1 4 3

4 A & 4

Weierstrass uniformization

There exist $\omega_1, \omega_2 \in \mathbb{C}$, linearly independent over \mathbb{R} , so that if we consider the lattice

$$\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2,$$

then the Weierstrass p-function is defined by

$$\wp_{\Lambda}(z) = rac{1}{z^2} + \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight).$$

The function $\wp(z)$ has double poles at each point in Λ and no other poles.

We obtain an exact sequence of abelian groups,

$$0 o \Lambda o \mathbb{C} \stackrel{\mathsf{exp}_E}{ o} E(\mathbb{C}) o 0,$$

where

$$\exp_E(z) = (\wp(z), \wp'(z)).$$

э

DQC

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We obtain an exact sequence of abelian groups,

$$0 o \Lambda o \mathbb{C} \stackrel{\mathsf{exp}_{\mathcal{E}}}{ o} E(\mathbb{C}) o 0,$$

where

$$\exp_E(z) = (\wp(z), \wp'(z)).$$

Moreover, we have a commutative diagram

where [n]P is the *n*-th multiple of a point *P* on the elliptic curve *E*.

< ロト < 同ト < ヨト < ヨト

Periods of E

How do we find ω_1 and ω_2 ?

An elliptic curve E,

$$E: y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C},$$

has the geometric structure of a torus in $\mathbb{P}^2(\mathbb{C})$. Let

$$\gamma_1, \gamma_2 \in H_1(E, \mathbb{Z})$$

be generators of the homology of *E*.

4 **A b b b b**

Periods of E

How do we find ω_1 and ω_2 ?

An elliptic curve E,

$$E: y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C},$$

has the geometric structure of a torus in $\mathbb{P}^2(\mathbb{C})$. Let

$$\gamma_1, \gamma_2 \in H_1(E, \mathbb{Z})$$

be generators of the homology of E.

Then we can choose

$$\omega_1 = \int_{\gamma_1} \frac{dx}{\sqrt{4x^3 + ax + b}}, \qquad \omega_2 = \int_{\gamma_2} \frac{dx}{\sqrt{4x^3 + ax + b}}.$$

4 6 1 1 4

Quasi-periods of E

- The differential *dx*/*y* on *E* generates the space of holomorphic 1-forms on *E* (differentials of the first kind).
- The differential *x dx*/*y* generates the space of differentials of the second kind (differentials with poles but residues of 0).

Quasi-periods of E

- The differential dx/y on E generates the space of holomorphic 1-forms on E (differentials of the first kind).
- The differential x dx/y generates the space of differentials of the second kind (differentials with poles but residues of 0).

We set

$$\eta_1 = \int_{\gamma_1} \frac{x \, dx}{\sqrt{4x^3 + ax + b}}, \qquad \eta_2 = \int_{\gamma_2} \frac{x \, dx}{\sqrt{4x^3 + ax + b}},$$

and η_1 , η_2 are called the *quasi-periods of E*.

• η_1 , η_2 arise simultaneously as special values of the Weierstrass ζ -function and as periods of extensions of *E* by \mathbb{G}_a .

不同 とうきょうきょう

Period matrix of E

• The period matrix of *E* is the matrix

$$m{P} = egin{bmatrix} \omega_1 & \eta_1 \ \omega_2 & \eta_2 \end{bmatrix}.$$

It provides a natural isomorphism

$$H^1_{\text{sing}}(E,\mathbb{C})\cong H^1_{\text{DR}}(E,\mathbb{C}).$$

4 A 1

-

Period matrix of E

• The period matrix of *E* is the matrix

$${m P} = egin{bmatrix} \omega_1 & \eta_1 \ \omega_2 & \eta_2 \end{bmatrix}.$$

It provides a natural isomorphism

$$H^1_{\text{sing}}(E,\mathbb{C})\cong H^1_{\text{DR}}(E,\mathbb{C}).$$

• Legendre Relation: From properties of elliptic functions, the determinant of *P* is

$$\omega_1\eta_2-\omega_2\eta_1=\pm 2\pi i.$$

Abelian varieties

Higher dimensional analogues of elliptic curves

- An abelian variety A over C is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.

Abelian varieties

Higher dimensional analogues of elliptic curves

- An abelian variety A over C is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.
- Much like for G_m and elliptic curves, an abelian variety of dimension d has a uniformization,

$$\mathbb{C}^d \ / \ \Lambda \cong A(\mathbb{C}),$$

where Λ is a discrete lattice of rank 2*d*.

500

The period matrix of an abelian variety

Let *A* be an abelian variety over \mathbb{C} of dimension *d*.

• As in the case of elliptic curves, there is a natural isomorphism,

$$H^1_{sing}(A, \mathbb{C}) \cong H^1_{DR}(A, \mathbb{C}),$$

defined by period integrals, whose defining matrix *P* is called the *period matrix of A*.

The period matrix of an abelian variety

Let *A* be an abelian variety over \mathbb{C} of dimension *d*.

• As in the case of elliptic curves, there is a natural isomorphism,

$$H^1_{sing}(A,\mathbb{C})\cong H^1_{\mathrm{DR}}(A,\mathbb{C}),$$

defined by period integrals, whose defining matrix *P* is called the *period matrix of A*.

We have

$$P = \left[\omega_{ij} \mid \eta_{ij} \right] \in \mathsf{Mat}_{\mathsf{2d}}(\mathbb{C}),$$

where $1 \le i \le 2d$, $1 \le j \le d$.

- The ω_{ij} 's provide coordinates for the period lattice Λ .
- The η_{ij} 's provide periods of extensions of *A* by \mathbb{G}_a .

Things Less Familiar

Transcendence in characteristic 0

- Theorems of Hermite-Lindemann and Gelfond-Schneider
- Schneider's theorems on elliptic functions
- Linear independence results
- Grothendieck's conjecture

Transcendence from \mathbb{G}_m

Theorem (Hermite-Lindemann 1870's, 1880's)

Let $\alpha \in \overline{\mathbb{Q}}$, $\alpha \neq 0$. Then $\exp(\alpha)$ is transcendental over \mathbb{Q} .

Examples

Each of the following is transcendental:

•
$$e$$
 ($\alpha = 1$)

•
$$\pi$$
 ($\alpha = 2\pi i$)

•
$$\log 2$$
 ($\alpha = \log 2$)

Hilbert's Seventh Problem

Theorem (Gelfond-Schneider 1930's)

Let α , $\beta \in \overline{\mathbb{Q}}$, with $\alpha \neq 0, 1$ and $\beta \notin \mathbb{Q}$. Then α^{β} is transcendental.

Examples

Each of the following is transcendental:

•
$$2^{\sqrt{2}}$$
 ($\alpha = 2, \beta = \sqrt{2}$)

•
$$e^{n}$$
 $(e^{n} = (-1)^{-1})$
log 2 $(2^{\log 2} - 2)$

•
$$\frac{\log 3}{\log 3}$$
 $(3\log 3 = 2)$

Periods and quasi-periods of elliptic curves

Theorem (Schneider 1930's)

Let *E* be an elliptic curve defined over $\overline{\mathbb{Q}}$,

$$E: y^2 = x^3 + ax + b, \quad a, b \in \overline{\mathbb{Q}}.$$

The periods and quasi-periods of E,

 $\omega_1, \omega_2, \eta_1, \eta_2$

are transcendental.

Let τ = ω₁/ω₂. Then either Q(τ)/Q is an imaginary quadratic extension (CM) or a purely transcendental extension (non-CM).

Linear independence

Linear forms in logarithms

Theorem (Baker 1960's)

Let $\alpha_1, \ldots, \alpha_m \in \overline{\mathbb{Q}}$. If $\log(\alpha_1), \ldots, \log(\alpha_m)$ are linearly independent over \mathbb{Q} , then

1, $\log(\alpha_1), \ldots, \log(\alpha_m)$

are linearly independent over $\overline{\mathbb{Q}}$.

- Extension of the Gelfond-Schneider theorem (m = 2).
- Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970's, 1980's) extended this result to elliptic and abelian integrals.

Linear independence

Linear forms in logarithms

Theorem (Baker 1960's)

Let $\alpha_1, \ldots, \alpha_m \in \overline{\mathbb{Q}}$. If $\log(\alpha_1), \ldots, \log(\alpha_m)$ are linearly independent over \mathbb{Q} , then

1, $\log(\alpha_1), \ldots, \log(\alpha_m)$

are linearly independent over $\overline{\mathbb{Q}}$.

- Extension of the Gelfond-Schneider theorem (m = 2).
- Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970's, 1980's) extended this result to elliptic and abelian integrals.

Conjecture (Gelfond/Folklore)

Let $\alpha_1, \ldots, \alpha_m \in \overline{\mathbb{Q}}$. If $\log(\alpha_1), \ldots, \log(\alpha_m)$ are linearly independent over \mathbb{Q} , then they are algebraically independent over $\overline{\mathbb{Q}}$.

э.

Grothendieck's conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over $\overline{\mathbb{Q}}$. Then

tr. $\deg(\overline{\mathbb{Q}}(P)/\overline{\mathbb{Q}}) = \dim \operatorname{MT}(A)$,

where $MT(A) \subseteq GL_{2d} / \mathbb{Q}$ is the Mumford-Tate group of A.

3

モトィモト

Grothendieck's conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over $\overline{\mathbb{Q}}$. Then

tr. $\deg(\overline{\mathbb{Q}}(P)/\overline{\mathbb{Q}}) = \dim \operatorname{MT}(A)$,

where $MT(A) \subseteq GL_{2d} / \mathbb{Q}$ is the Mumford-Tate group of A.

Let A be an elliptic curve.

One can show

$$\dim \mathrm{MT}(A) = \begin{cases} 4 & \text{if } \mathrm{End}(A) = \mathbb{Z}, \\ 2 & \text{if } \mathrm{End}(A) \neq \mathbb{Z}. \end{cases}$$

(G. Chudnovsky, 1970's) If End(A) ≠ Z, then Grothendieck's conjecture is true.

Things Less Less Familiar

- Function fields
- Drinfeld modules
 - The Carlitz module
 - Drinfeld modules of rank 2
- *t*-modules (higher dimensional Drinfeld modules)
- Transcendence results

Function fields

Let p be a fixed prime; q a fixed power of p.

$A \mathrel{\mathop:}= \mathbb{F}_q[heta]$	\longleftrightarrow	\mathbb{Z}
$k \mathrel{\mathop:}= \mathbb{F}_q(\theta)$	\longleftrightarrow	\mathbb{Q}
\overline{k}	\longleftrightarrow	$\overline{\mathbb{Q}}$
$k_\infty := \mathbb{F}_q((1/ heta))$	\longleftrightarrow	\mathbb{R}
$\mathbb{C}_\infty:=\widehat{\overline{k_\infty}}$	\longleftrightarrow	\mathbb{C}
$ f _{\infty}=q^{\deg f}$	\longleftrightarrow	$ \cdot $

э

DQC

< □ > < 同 > < 回 > < 回 > < 回 > <

Twisted polynomials

- Let $F : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be the *q*-th power Frobenius map: $F(x) = x^q$.
- For a subfield $\mathbb{F}_q \subseteq K \subseteq \mathbb{C}_{\infty}$, the ring of *twisted polynomials* over K is

K[F] = polynomials in F with coefficients in K,

subject to the conditions

$$Fc = c^q F$$
, $\forall c \in K$.

3

Twisted polynomials

- Let $F : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be the *q*-th power Frobenius map: $F(x) = x^q$.
- For a subfield $\mathbb{F}_q \subseteq K \subseteq \mathbb{C}_{\infty}$, the ring of *twisted polynomials* over K is

K[F] = polynomials in F with coefficients in K,

subject to the conditions

$$Fc = c^q F$$
, $\forall c \in K$.

In this way,

 $K[F] \cong \{\mathbb{F}_q \text{-linear endomorphisms of } K^+\}.$

For $x \in K$ and $\phi = a_0 + a_1F + \cdots + a_rF^r \in K[F]$, we write

$$\phi(\mathbf{x}) := \mathbf{a}_0 \mathbf{x} + \mathbf{a}_1 \mathbf{x}^q + \cdots + \mathbf{a}_r \mathbf{x}^{q^r}.$$

医静脉 化医原水医原 医马

Drinfeld modules

Function field analogues of \mathbb{G}_m and elliptic curves Let $\mathbb{F}_q[t]$ be a polynomial ring in *t* over \mathbb{F}_q .

Definition

A *Drinfeld module* over is an \mathbb{F}_q -algebra homomorphism,

 $\rho: \mathbb{F}_q[t] \to \mathbb{C}_\infty[F],$

such that

$$\rho(t)=\theta+a_1F+\cdots a_rF^r.$$

Drinfeld modules

Function field analogues of \mathbb{G}_m and elliptic curves Let $\mathbb{F}_q[t]$ be a polynomial ring in *t* over \mathbb{F}_q .

Definition

A *Drinfeld module* over is an \mathbb{F}_q -algebra homomorphism,

 $\rho: \mathbb{F}_q[t] \to \mathbb{C}_\infty[F],$

such that

$$\rho(t)=\theta+a_1F+\cdots a_rF^r.$$

• ρ makes \mathbb{C}_{∞} into a $\mathbb{F}_q[t]$ -module in the following way:

$$f * x :=
ho(f)(x), \quad \forall f \in \mathbb{F}_q[t], x \in \mathbb{C}_\infty.$$

- If $a_1, \ldots, a_r \in K \subseteq \mathbb{C}_{\infty}$, we say ρ is defined over K.
- r is called the rank of ρ .

The Carlitz module

The analogue of \mathbb{G}_m

We define a Drinfeld module $C : \mathbb{F}_q[t] \to \mathbb{C}_\infty[F]$ by

$$C(t):=\theta+F.$$

Thus, for any $x \in \mathbb{C}_{\infty}$,

 $C(t)(x) = \theta x + x^q.$

= nar

4 **A A A A A A A**

Carlitz exponential

We set

$$\exp_{\mathcal{C}}(z) = z + \sum_{i=1}^{\infty} \frac{z^{q^i}}{(\theta^{q^i} - \theta)(\theta^{q^i} - \theta^q) \cdots (\theta^{q^i} - \theta^{q^{i-1}})}.$$

• $exp_C : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is entire, surjective, and \mathbb{F}_q -linear.

• Functional equation:

$$\exp_C(\theta z) = \theta \exp_C(z) + \exp_C(z)^q,$$

 $\exp_C(f(\theta)z) = C(f)(\exp_C(z)), \quad \forall f(t) \in \mathbb{F}_q[t].$

AWS 2008 (Lecture 1)

3

< □ > < 同 > < 回 > < 回 > < 回 > <

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_q[t]$ -modules,

3

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_q[t]$ -modules,

The kernel of $\exp_C(z)$ is

$$\ker(\exp_C(z)) = \mathbb{F}_q[\theta]\pi_q,$$

where

$$\pi_q = \theta^{q-1}\sqrt{-\theta} \prod_{i=1}^{\infty} \left(1 - \theta^{1-q^i}\right)^{-1}.$$

Thus we have an exact sequence of $\mathbb{F}_q[t]$ -modules,

$$\mathbf{0} \to \mathbb{F}_{\boldsymbol{q}}[\theta] \pi_{\boldsymbol{q}} \to \mathbb{C}_{\infty} \stackrel{\exp_{\boldsymbol{C}}}{\to} \mathbb{C}_{\infty} \to \mathbf{0}.$$

Theorem (Wade 1941)

The Carlitz period π_q is transcendental over \overline{k} .

AWS 2008 (Lecture 1)

Function Field Transcendence

March 15, 2008 27 / 33

Drinfeld modules of rank 2

• Suppose $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$ is a rank 2 Drinfeld module defined over \overline{k} by

$$\rho(t) = \theta + \kappa F + \lambda F^2.$$

• Then there is an unique, entire, \mathbb{F}_q -linear function

$$\exp_{\rho}: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty},$$

so that

$$\exp_{
ho}(f(heta)z) =
ho(f)(\exp_{
ho}(z)), \quad orall f \in \mathbb{F}_q[t].$$

AWS 2008 (Lecture 1)

Periods of Drinfeld modules of rank 2

• Furthermore, there are $\omega_1, \, \omega_2 \in \mathbb{C}_{\infty}$ so that

$$\operatorname{ker}(\exp_{\rho}(z)) = \mathbb{F}_{q}[\theta]\omega_{1} + \mathbb{F}_{q}[\theta]\omega_{2} =: \Lambda,$$

where Λ is a discrete $\mathbb{F}_q[\theta]$ -submodule of \mathbb{C} of rank 2.

Periods of Drinfeld modules of rank 2

• Furthermore, there are $\omega_1, \, \omega_2 \in \mathbb{C}_{\infty}$ so that

$$\ker(\exp_{
ho}(z)) = \mathbb{F}_q[heta]\omega_1 + \mathbb{F}_q[heta]\omega_2 =: \Lambda,$$

where Λ is a discrete $\mathbb{F}_q[\theta]$ -submodule of \mathbb{C} of rank 2. • Chicken vs. Egg:

$$\exp_{\rho}(z) = z \prod_{0 \neq \omega \in \Lambda} \left(1 - \frac{z}{\omega}\right).$$

• Again we have a uniformizing exact sequence of $\mathbb{F}_q[t]$ -modules

$$0 o \Lambda o \mathbb{C}_{\infty} \stackrel{\mathsf{exp}_{
ho}}{ o} \mathbb{C}_{\infty} o 0.$$

Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods η_1 , $\eta_2 \in \mathbb{C}_{\infty}$ for ρ with the following properties (see notes):

- η_1 , η_2 arise as periods of extensions of ρ by \mathbb{G}_a .
- Legendre relation: $\omega_1\eta_2 \omega_2\eta_1 = \zeta \pi_q$ for some $\zeta \in \mathbb{F}_q^{\times}$.

500

Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods η_1 , $\eta_2 \in \mathbb{C}_{\infty}$ for ρ with the following properties (see notes):

- η_1 , η_2 arise as periods of extensions of ρ by \mathbb{G}_a .
- Legendre relation: $\omega_1\eta_2 \omega_2\eta_1 = \zeta \pi_q$ for some $\zeta \in \mathbb{F}_q^{\times}$.

Theorem (Yu 1980's)

For a Drinfeld module ρ of rank 2 defined over \overline{k} , the four quantities

 $\omega_1, \omega_2, \eta_1, \eta_2$

are transcendental over \overline{k} .

3

t-modules

Higher dimensional Drinfeld modules

• A *t-module* A of dimension d is an \mathbb{F}_q -linear homomorphism,

$$A: \mathbb{F}_q[t] \to \mathsf{End}_{\mathbb{F}_q}(\mathbb{C}^d_\infty) \cong \mathsf{Mat}_d(\mathbb{C}_\infty[F]),$$

such that

$$A(t) = \theta \mathrm{Id} + N + a_0 F + \cdots + a_r F^r,$$

where $N \in Mat_d(\mathbb{C}_\infty)$ is nilpotent.

• Thus \mathbb{C}^d_{∞} is given the structure of an $\mathbb{F}_q[t]$ -module via

$$f * x := A(f)(x), \quad \forall f \in \mathbb{F}_q[t], \ x \in \mathbb{C}_{\infty}^d.$$

Exponential functions of *t*-modules

 \bullet There is a unique entire $\text{exp}_{\mathcal{A}}:\mathbb{C}^d_\infty\to\mathbb{C}^d_\infty$ so that

 $\exp_{\mathcal{A}}((\theta \mathrm{Id} + N)z) = \mathcal{A}(t)(\exp_{\mathcal{A}}(z)).$

If exp_A is surjective, we have an exact sequence

$$0 o \Lambda o \mathbb{C}^d_\infty \stackrel{exp_A}{ o} \mathbb{C}^d_\infty o 0,$$

where Λ is a discrete $\mathbb{F}_q[t]$ -submodule of \mathbb{C}^d_{∞} .

- Λ is called the *period lattice* of *A*.
- Quasi-periods can also be defined (see notes).

Yu's Theorem of the Sub-t-module

Analogue of Wüstholz's Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over \overline{k} . Suppose $u \in \mathbb{C}^d_{\infty}$ satisfies $\exp_A(u) \in \overline{k}^d$. Then the smallest vector space $H \subseteq \mathbb{C}^d_{\infty}$ defined over \overline{k} which is invariant under $\theta \operatorname{Id} + N$ and which contains u has the property that

 $\exp_{\mathcal{A}}(\mathcal{H}) \subseteq \mathcal{A}(\mathbb{C}_{\infty}),$

is a sub-t-module of A.

Yu's Theorem of the Sub-t-module

Analogue of Wüstholz's Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over \overline{k} . Suppose $u \in \mathbb{C}^d_{\infty}$ satisfies $\exp_A(u) \in \overline{k}^d$. Then the smallest vector space $H \subseteq \mathbb{C}^d_{\infty}$ defined over \overline{k} which is invariant under $\theta \operatorname{Id} + N$ and which contains u has the property that

$$\exp_A(H) \subseteq A(\mathbb{C}_\infty),$$

is a sub-t-module of A.

Theorem (Yu 1997 (Linear independence of Carlitz logarithms)) Suppose $\alpha_1, \ldots, \alpha_m \in \overline{k}$. If $\log_C(\alpha_1), \ldots, \log_C(\alpha_m) \in \mathbb{C}_{\infty}$ are linearly independent over $k = \mathbb{F}_q(\theta)$, then

1,
$$\log_{\mathcal{C}}(\alpha_1), \ldots, \log_{\mathcal{C}}(\alpha_m)$$

are linearly independent over \overline{k} .