Transcendence in Positive Characteristic Introduction to Function Field Transcendence

W. Dale Brownawell
Matthew Papanikolas

Penn State University
Texas A\&M University

Arizona Winter School 2008
March 15, 2008

Outline

(9) Things Familiar

(2) Things Less Familiar
(3) Things Less Less Familiar

Things Familiar

Arithmetic objects from characteristic 0

- The multiplicative group and $\exp (z)$
- Elliptic curves and elliptic functions
- Abelian varieties

The multiplicative group

We have the usual exact sequence of abelian groups

$$
0 \rightarrow 2 \pi i \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\exp } \mathbb{C}^{\times} \rightarrow 0
$$

where

$$
\exp (z)=\sum_{i=0}^{\infty} \frac{z^{i}}{i!} \in \mathbb{Q}[[z]]
$$

The multiplicative group

We have the usual exact sequence of abelian groups

$$
0 \rightarrow 2 \pi i \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\exp } \mathbb{C}^{\times} \rightarrow 0
$$

where

$$
\exp (z)=\sum_{i=0}^{\infty} \frac{z^{i}}{i!} \in \mathbb{Q}[[z]]
$$

For any $n \in \mathbb{Z}$,

which is simply a restatement of the functional equation

$$
\exp (n z)=\exp (z)^{n}
$$

Roots of unity

Torsion in the multiplicative group

The n-th roots of unity are defined by

$$
\mu_{n}:=\left\{\zeta \in \mathbb{C}^{\times} \mid \zeta^{n}=1\right\}=\{\exp (2 \pi i a / n) \mid a \in \mathbb{Z}\}
$$

- $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$.
- Kronecker-Weber Theorem: The cyclotomic fields $\mathbb{Q}\left(\mu_{n}\right)$ provide explicit class field theory for \mathbb{Q}.
- For $\zeta \in \mu_{n}$,

$$
\log (\zeta)=\frac{2 \pi i a}{n}, \quad 0 \leq a<n
$$

Elliptic curves over \mathbb{C}

Smooth projective algebraic curve of genus 1 .

$$
E: y^{2}=4 x^{3}+a x+b, \quad a, b \in \mathbb{C}
$$

$E(\mathbb{C})$ has the structure of an abelian group through the usual chord-tangent construction.

Weierstrass uniformization

There exist $\omega_{1}, \omega_{2} \in \mathbb{C}$, linearly independent over \mathbb{R}, so that if we consider the lattice

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}
$$

then the Weierstrass \wp-function is defined by

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

The function $\wp(z)$ has double poles at each point in Λ and no other poles.

We obtain an exact sequence of abelian groups,

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C} \xrightarrow{\exp _{E}} E(\mathbb{C}) \rightarrow 0
$$

where

$$
\exp _{E}(z)=\left(\wp(z), \wp^{\prime}(z)\right)
$$

We obtain an exact sequence of abelian groups,

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C} \xrightarrow{\exp _{E}} E(\mathbb{C}) \rightarrow 0
$$

where

$$
\exp _{E}(z)=\left(\wp(z), \wp^{\prime}(z)\right)
$$

Moreover, we have a commutative diagram

where $[n] P$ is the n-th multiple of a point P on the elliptic curve E.

Periods of E

How do we find ω_{1} and ω_{2} ?
An elliptic curve E,

$$
E: y^{2}=4 x^{3}+a x+b, \quad a, b \in \mathbb{C},
$$

has the geometric structure of a torus in $\mathbb{P}^{2}(\mathbb{C})$. Let

$$
\gamma_{1}, \gamma_{2} \in H_{1}(E, \mathbb{Z})
$$

be generators of the homology of E.

Periods of E

How do we find ω_{1} and ω_{2} ?

An elliptic curve E,

$$
E: y^{2}=4 x^{3}+a x+b, \quad a, b \in \mathbb{C}
$$

has the geometric structure of a torus in $\mathbb{P}^{2}(\mathbb{C})$. Let

$$
\gamma_{1}, \gamma_{2} \in H_{1}(E, \mathbb{Z})
$$

be generators of the homology of E.
Then we can choose

$$
\omega_{1}=\int_{\gamma_{1}} \frac{d x}{\sqrt{4 x^{3}+a x+b}}, \quad \omega_{2}=\int_{\gamma_{2}} \frac{d x}{\sqrt{4 x^{3}+a x+b}}
$$

Quasi-periods of E

- The differential $d x / y$ on E generates the space of holomorphic 1-forms on E (differentials of the first kind).
- The differential $x d x / y$ generates the space of differentials of the second kind (differentials with poles but residues of 0).

Quasi-periods of E

- The differential $d x / y$ on E generates the space of holomorphic 1-forms on E (differentials of the first kind).
- The differential $x d x / y$ generates the space of differentials of the second kind (differentials with poles but residues of 0).
- We set

$$
\eta_{1}=\int_{\gamma_{1}} \frac{x d x}{\sqrt{4 x^{3}+a x+b}}, \quad \eta_{2}=\int_{\gamma_{2}} \frac{x d x}{\sqrt{4 x^{3}+a x+b}}
$$

and η_{1}, η_{2} are called the quasi-periods of E.

- η_{1}, η_{2} arise simultaneously as special values of the Weierstrass ζ-function and as periods of extensions of E by \mathbb{G}_{a}.

Period matrix of E

- The period matrix of E is the matrix

$$
P=\left[\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right]
$$

It provides a natural isomorphism

$$
H_{\text {sing }}^{1}(E, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(E, \mathbb{C})
$$

Period matrix of E

- The period matrix of E is the matrix

$$
P=\left[\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right]
$$

It provides a natural isomorphism

$$
H_{\mathrm{sing}}^{1}(E, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(E, \mathbb{C})
$$

- Legendre Relation: From properties of elliptic functions, the determinant of P is

$$
\omega_{1} \eta_{2}-\omega_{2} \eta_{1}= \pm 2 \pi i
$$

Abelian varieties

Higher dimensional analogues of elliptic curves

- An abelian variety A over \mathbb{C} is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.

Abelian varieties

Higher dimensional analogues of elliptic curves

- An abelian variety A over \mathbb{C} is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.
- Much like for \mathbb{G}_{m} and elliptic curves, an abelian variety of dimension d has a uniformization,

$$
\mathbb{C}^{d} / \Lambda \cong A(\mathbb{C})
$$

where Λ is a discrete lattice of rank $2 d$.

The period matrix of an abelian variety

Let A be an abelian variety over \mathbb{C} of dimension d.

- As in the case of elliptic curves, there is a natural isomorphism,

$$
H_{\text {sing }}^{1}(A, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(A, \mathbb{C})
$$

defined by period integrals, whose defining matrix P is called the period matrix of A.

The period matrix of an abelian variety

Let A be an abelian variety over \mathbb{C} of dimension d.

- As in the case of elliptic curves, there is a natural isomorphism,

$$
H_{\mathrm{sing}}^{1}(A, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(A, \mathbb{C})
$$

defined by period integrals, whose defining matrix P is called the period matrix of A.

- We have

$$
P=\left[\omega_{i j} \mid \eta_{i j}\right] \in \operatorname{Mat}_{2 d}(\mathbb{C})
$$

where $1 \leq i \leq 2 d, 1 \leq j \leq d$.

- The $\omega_{i j}$'s provide coordinates for the period lattice Λ.
- The $\eta_{i j}$'s provide periods of extensions of A by \mathbb{G}_{a}.

Things Less Familiar
 Transcendence in characteristic 0

- Theorems of Hermite-Lindemann and Gelfond-Schneider
- Schneider's theorems on elliptic functions
- Linear independence results
- Grothendieck's conjecture

Transcendence from \mathbb{G}_{m}

Theorem (Hermite-Lindemann 1870's, 1880's)
Let $\alpha \in \mathbb{Q}, \alpha \neq 0$. Then $\exp (\alpha)$ is transcendental over \mathbb{Q}.

Examples

Each of the following is transcendental:

- $e \quad(\alpha=1)$
- $\pi \quad(\alpha=2 \pi i)$
- $\log 2(\alpha=\log 2)$

Hilbert's Seventh Problem

Theorem (Gelfond-Schneider 1930's)
Let $\alpha, \beta \in \overline{\mathbb{Q}}$, with $\alpha \neq 0,1$ and $\beta \notin \mathbb{Q}$. Then α^{β} is transcendental.

Examples

Each of the following is transcendental:

- $2^{\sqrt{2}} \quad(\alpha=2, \beta=\sqrt{2})$
- $e^{\pi} \quad\left(e^{\pi}=(-1)^{-i}\right)$
- $\frac{\log 2}{\log 3} \quad\left(3^{\frac{\log 2}{\log 3}}=2\right)$

Periods and quasi-periods of elliptic curves

Theorem (Schneider 1930's)

Let E be an elliptic curve defined over $\overline{\mathbb{Q}}$,

$$
E: y^{2}=x^{3}+a x+b, \quad a, b \in \overline{\mathbb{Q}} .
$$

- The periods and quasi-periods of E,

$$
\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}
$$

are transcendental.

- Let $\tau=\omega_{1} / \omega_{2}$. Then either $\mathbb{Q}(\tau) / \mathbb{Q}$ is an imaginary quadratic extension (CM) or a purely transcendental extension (non-CM).

Linear independence

Linear forms in logarithms
Theorem (Baker 1960's)
Let $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$. If $\log \left(\alpha_{1}\right), \ldots, \log \left(\alpha_{m}\right)$ are linearly independent over \mathbb{Q}, then

$$
1, \log \left(\alpha_{1}\right), \ldots, \log \left(\alpha_{m}\right)
$$

are linearly independent over $\overline{\mathbb{Q}}$.

- Extension of the Gelfond-Schneider theorem ($m=2$).
- Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970's, 1980's) extended this result to elliptic and abelian integrals.

Linear independence

Linear forms in logarithms
Theorem (Baker 1960's)
Let $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$. If $\log \left(\alpha_{1}\right), \ldots, \log \left(\alpha_{m}\right)$ are linearly independent over \mathbb{Q}, then

$$
1, \log \left(\alpha_{1}\right), \ldots, \log \left(\alpha_{m}\right)
$$

are linearly independent over $\overline{\mathbb{Q}}$.

- Extension of the Gelfond-Schneider theorem ($m=2$).
- Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970's, 1980's) extended this result to elliptic and abelian integrals.

Conjecture (Gelfond/Folklore)

Let $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$. If $\log \left(\alpha_{1}\right), \ldots, \log \left(\alpha_{m}\right)$ are linearly independent over \mathbb{Q}, then they are algebraically independent over \mathbb{Q}.

Grothendieck's conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over $\overline{\mathbb{Q}}$. Then

$$
\operatorname{tr} \cdot \operatorname{deg}(\overline{\mathbb{Q}}(P) / \overline{\mathbb{Q}})=\operatorname{dim} \operatorname{MT}(A)
$$

where $\operatorname{MT}(A) \subseteq \mathrm{GL}_{2 d} / \mathbb{Q}$ is the Mumford-Tate group of A.

Grothendieck's conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over $\overline{\mathbb{Q}}$. Then

$$
\operatorname{tr} \cdot \operatorname{deg}(\overline{\mathbb{Q}}(P) / \overline{\mathbb{Q}})=\operatorname{dim} \mathrm{MT}(A),
$$

where $\operatorname{MT}(A) \subseteq \mathrm{GL}_{2 d} / \mathbb{Q}$ is the Mumford-Tate group of A.

Let A be an elliptic curve.

- One can show

$$
\operatorname{dim} \operatorname{MT}(A)= \begin{cases}4 & \text { if } \operatorname{End}(A)=\mathbb{Z}, \\ 2 & \text { if } \operatorname{End}(A) \neq \mathbb{Z}\end{cases}
$$

- (G. Chudnovsky, 1970's) If End $(A) \neq \mathbb{Z}$, then Grothendieck's conjecture is true.

Things Less Less Familiar

- Function fields
- Drinfeld modules
- The Carlitz module
- Drinfeld modules of rank 2
- t-modules (higher dimensional Drinfeld modules)
- Transcendence results

Function fields

Let p be a fixed prime; q a fixed power of p.

$$
\begin{array}{lll}
A:=\mathbb{F}_{q}[\theta] & \longleftrightarrow & \mathbb{Z} \\
k:=\mathbb{F}_{q}(\theta) & \longleftrightarrow & \mathbb{Q} \\
\bar{k} & \longleftrightarrow & \mathbb{Q} \\
k_{\infty}:=\mathbb{F}_{q}((1 / \theta)) & \longleftrightarrow & \mathbb{R} \\
\mathbb{C}_{\infty}:=\widehat{k_{\infty}} & \longleftrightarrow & \mathbb{C} \\
|f|_{\infty}=q^{\operatorname{deg} f} & \longleftrightarrow & |\cdot|
\end{array}
$$

Twisted polynomials

- Let $F: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be the q-th power Frobenius map: $F(x)=x^{q}$.
- For a subfield $\mathbb{F}_{q} \subseteq K \subseteq \mathbb{C}_{\infty}$, the ring of twisted polynomials over K is

$$
K[F]=\text { polynomials in } F \text { with coefficients in } K
$$

subject to the conditions

$$
F c=c^{q} F, \quad \forall c \in K
$$

Twisted polynomials

- Let $F: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be the q-th power Frobenius map: $F(x)=x^{q}$.
- For a subfield $\mathbb{F}_{q} \subseteq K \subseteq \mathbb{C}_{\infty}$, the ring of twisted polynomials over K is

$$
K[F]=\text { polynomials in } F \text { with coefficients in } K,
$$

subject to the conditions

$$
F c=c^{q} F, \quad \forall c \in K
$$

- In this way,

$$
K[F] \cong\left\{\mathbb{F}_{q^{-}} \text {-linear endomorphisms of } K^{+}\right\} .
$$

For $x \in K$ and $\phi=a_{0}+a_{1} F+\cdots a_{r} F^{r} \in K[F]$, we write

$$
\phi(x):=a_{0} x+a_{1} x^{q}+\cdots+a_{r} x^{q^{r}} .
$$

Drinfeld modules

Function field analogues of \mathbb{G}_{m} and elliptic curves
Let $\mathbb{F}_{q}[t]$ be a polynomial ring in t over \mathbb{F}_{q}.

Definition

A Drinfeld module over is an \mathbb{F}_{q}-algebra homomorphism,

$$
\rho: \mathbb{F}_{q}[t] \rightarrow \mathbb{C}_{\infty}[F]
$$

such that

$$
\rho(t)=\theta+a_{1} F+\cdots a_{r} F^{r} .
$$

Drinfeld modules

Function field analogues of \mathbb{G}_{m} and elliptic curves
Let $\mathbb{F}_{q}[t]$ be a polynomial ring in t over \mathbb{F}_{q}.

Definition

A Drinfeld module over is an \mathbb{F}_{q}-algebra homomorphism,

$$
\rho: \mathbb{F}_{q}[t] \rightarrow \mathbb{C}_{\infty}[F]
$$

such that

$$
\rho(t)=\theta+a_{1} F+\cdots a_{r} F^{r} .
$$

- ρ makes \mathbb{C}_{∞} into a $\mathbb{F}_{q}[t]$-module in the following way:

$$
f * x:=\rho(f)(x), \quad \forall f \in \mathbb{F}_{q}[t], x \in \mathbb{C}_{\infty}
$$

- If $a_{1}, \ldots, a_{r} \in K \subseteq \mathbb{C}_{\infty}$, we say ρ is defined over K.
- r is called the rank of ρ.

The Carlitz module

The analogue of \mathbb{G}_{m}

We define a Drinfeld module $C: \mathbb{F}_{q}[t] \rightarrow \mathbb{C}_{\infty}[F]$ by

$$
C(t):=\theta+F .
$$

Thus, for any $x \in \mathbb{C}_{\infty}$,

$$
C(t)(x)=\theta x+x^{q} .
$$

Carlitz exponential

We set

$$
\exp _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta^{q^{i-1}}\right)}
$$

- $\exp _{C}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ is entire, surjective, and \mathbb{F}_{q}-linear.
- Functional equation:

$$
\begin{aligned}
\exp _{C}(\theta z) & =\theta \exp _{C}(z)+\exp _{C}(z)^{q} \\
\exp _{C}(f(\theta) z) & =C(f)\left(\exp _{C}(z)\right), \quad \forall f(t) \in \mathbb{F}_{q}[t]
\end{aligned}
$$

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_{q}[t]$-modules,

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_{q}[t]$-modules,

The kernel of $\exp _{C}(z)$ is

$$
\operatorname{ker}\left(\exp _{C}(z)\right)=\mathbb{F}_{q}[\theta] \pi_{q}
$$

where

$$
\pi_{q}=\theta \sqrt[q-1]{-\theta} \prod_{i=1}^{\infty}\left(1-\theta^{1-q^{i}}\right)^{-1}
$$

Wade's result

Thus we have an exact sequence of $\mathbb{F}_{q}[t]$-modules,

$$
0 \rightarrow \mathbb{F}_{q}[\theta] \pi_{q} \rightarrow \mathbb{C}_{\infty} \xrightarrow{\exp _{C}} \mathbb{C}_{\infty} \rightarrow 0
$$

Theorem (Wade 1941)
The Carlitz period π_{q} is transcendental over \bar{k}.

Drinfeld modules of rank 2

- Suppose $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ is a rank 2 Drinfeld module defined over \bar{k} by

$$
\rho(t)=\theta+\kappa F+\lambda F^{2}
$$

- Then there is an unique, entire, \mathbb{F}_{q}-linear function

$$
\exp _{\rho}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}
$$

so that

$$
\exp _{\rho}(f(\theta) z)=\rho(f)\left(\exp _{\rho}(z)\right), \quad \forall f \in \mathbb{F}_{q}[t]
$$

Periods of Drinfeld modules of rank 2

- Furthermore, there are $\omega_{1}, \omega_{2} \in \mathbb{C}_{\infty}$ so that

$$
\operatorname{ker}\left(\exp _{\rho}(z)\right)=\mathbb{F}_{q}[\theta] \omega_{1}+\mathbb{F}_{q}[\theta] \omega_{2}=: \Lambda
$$

where Λ is a discrete $\mathbb{F}_{q}[\theta]$-submodule of \mathbb{C} of rank 2 .

Periods of Drinfeld modules of rank 2

- Furthermore, there are $\omega_{1}, \omega_{2} \in \mathbb{C}_{\infty}$ so that

$$
\operatorname{ker}\left(\exp _{\rho}(z)\right)=\mathbb{F}_{q}[\theta] \omega_{1}+\mathbb{F}_{q}[\theta] \omega_{2}=: \Lambda
$$

where Λ is a discrete $\mathbb{F}_{q}[\theta]$-submodule of \mathbb{C} of rank 2 .

- Chicken vs. Egg:

$$
\exp _{\rho}(z)=z \prod_{0 \neq \omega \in \Lambda}\left(1-\frac{z}{\omega}\right)
$$

- Again we have a uniformizing exact sequence of $\mathbb{F}_{q}[t]$-modules

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C}_{\infty} \xrightarrow{\exp _{\rho}} \mathbb{C}_{\infty} \rightarrow 0
$$

Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods $\eta_{1}, \eta_{2} \in \mathbb{C}_{\infty}$ for ρ with the following properties (see notes):

- η_{1}, η_{2} arise as periods of extensions of ρ by \mathbb{G}_{a}.
- Legendre relation: $\omega_{1} \eta_{2}-\omega_{2} \eta_{1}=\zeta \pi_{q}$ for some $\zeta \in \mathbb{F}_{q}^{\times}$.

Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods $\eta_{1}, \eta_{2} \in \mathbb{C}_{\infty}$ for ρ with the following properties (see notes):

- η_{1}, η_{2} arise as periods of extensions of ρ by \mathbb{G}_{a}.
- Legendre relation: $\omega_{1} \eta_{2}-\omega_{2} \eta_{1}=\zeta \pi_{q}$ for some $\zeta \in \mathbb{F}_{q}^{\times}$.

Theorem (Yu 1980's)

For a Drinfeld module ρ of rank 2 defined over \bar{k}, the four quantities

$$
\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}
$$

are transcendental over \bar{k}.

t-modules

Higher dimensional Drinfeld modules

- A t-module A of dimension d is an \mathbb{F}_{q}-linear homomorphism,

$$
A: \mathbb{F}_{q}[t] \rightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{C}_{\infty}^{d}\right) \cong \operatorname{Mat}_{d}\left(\mathbb{C}_{\infty}[F]\right)
$$

such that

$$
A(t)=\theta \operatorname{Id}+N+a_{0} F+\cdots a_{r} F^{r}
$$

where $N \in \operatorname{Mat}_{d}\left(\mathbb{C}_{\infty}\right)$ is nilpotent.

- Thus \mathbb{C}_{∞}^{d} is given the structure of an $\mathbb{F}_{q}[t]$-module via

$$
f * x:=A(f)(x), \quad \forall f \in \mathbb{F}_{q}[t], x \in \mathbb{C}_{\infty}^{d}
$$

Exponential functions of t-modules

- There is a unique entire $\exp _{A}: \mathbb{C}_{\infty}^{d} \rightarrow \mathbb{C}_{\infty}^{d}$ so that

$$
\exp _{A}((\theta \operatorname{Id}+N) z)=A(t)\left(\exp _{A}(z)\right)
$$

- If $\exp _{A}$ is surjective, we have an exact sequence

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C}_{\infty}^{d} \xrightarrow{\exp _{A}} \mathbb{C}_{\infty}^{d} \rightarrow 0
$$

where Λ is a discrete $\mathbb{F}_{q}[t]$-submodule of \mathbb{C}_{∞}^{d}.

- Λ is called the period lattice of A.
- Quasi-periods can also be defined (see notes).

Yu's Theorem of the Sub-t-module

Analogue of Wüstholz's Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over \bar{k}. Suppose $u \in \mathbb{C}_{\infty}^{d}$ satisfies $\exp _{A}(u) \in \bar{k}^{d}$. Then the smallest vector space $H \subseteq \mathbb{C}_{\infty}^{d}$ defined over \bar{k} which is invariant under $\theta \mathrm{Id}+N$ and which contains u has the property that

$$
\exp _{A}(H) \subseteq A\left(\mathbb{C}_{\infty}\right),
$$

is a sub-t-module of A.

Yu's Theorem of the Sub- t-module

Analogue of Wüstholz's Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over \bar{k}. Suppose $u \in \mathbb{C}_{\infty}^{d}$ satisfies $\exp _{A}(u) \in \bar{k}^{d}$. Then the smallest vector space $H \subseteq \mathbb{C}_{\infty}^{d}$ defined over \bar{k} which is invariant under θ Id $+N$ and which contains u has the property that

$$
\exp _{A}(H) \subseteq A\left(\mathbb{C}_{\infty}\right),
$$

is a sub-t-module of A.
Theorem (Yu 1997 (Linear independence of Carlitz logarithms))
Suppose $\alpha_{1}, \ldots, \alpha_{m} \in \bar{k}$. If $\log _{c}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{m}\right) \in \mathbb{C}_{\infty}$ are linearly independent over $k=\mathbb{F}_{q}(\theta)$, then

$$
1, \log _{C}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{m}\right)
$$

are linearly independent over \bar{k}.

