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Things Familiar
Arithmetic objects from characteristic 0

The multiplicative group and exp(z)

Elliptic curves and elliptic functions

Abelian varieties
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The multiplicative group
We have the usual exact sequence of abelian groups

0→ 2πiZ→ C exp→ C× → 0,

where

exp(z) =
∞∑

i=0

z i

i!
∈ Q[[z]].

For any n ∈ Z,

C
z 7→nz

��

exp // C×

x 7→xn

��
C

exp // C×

which is simply a restatement of the functional equation

exp(nz) = exp(z)n.
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Roots of unity
Torsion in the multiplicative group

The n-th roots of unity are defined by

µn :=
{
ζ ∈ C× | ζn = 1

}
=
{

exp
(
2πia/n

)
| a ∈ Z

}
Gal(Q(µn)/Q) ∼= (Z/nZ)×.
Kronecker-Weber Theorem: The cyclotomic fields Q(µn) provide
explicit class field theory for Q.
For ζ ∈ µn,

log(ζ) =
2πia

n
, 0 ≤ a < n.
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Elliptic curves over C

Smooth projective algebraic curve of genus 1.

E : y2 = 4x3 + ax + b, a,b ∈ C

E(C) has the structure of an abelian group through the usual
chord-tangent construction.
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Weierstrass uniformization

There exist ω1, ω2 ∈ C, linearly independent over R, so that if we
consider the lattice

Λ = Zω1 + Zω2,

then the Weierstrass ℘-function is defined by

℘Λ(z) =
1
z2 +

∑
ω∈Λ
ω 6=0

(
1

(z − ω)2 −
1
ω2

)
.

The function ℘(z) has double poles at each point in Λ and no other
poles.
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We obtain an exact sequence of abelian groups,

0→ Λ→ C
expE→ E(C)→ 0,

where
expE (z) = (℘(z), ℘′(z)).

Moreover, we have a commutative diagram

C

z 7→nz
��

expE// E(C)

P 7→[n]P
��

C
expE// E(C)

where [n]P is the n-th multiple of a point P on the elliptic curve E .
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Periods of E
How do we find ω1 and ω2?

An elliptic curve E ,

E : y2 = 4x3 + ax + b, a,b ∈ C,

has the geometric structure of a torus in P2(C). Let

γ1, γ2 ∈ H1(E ,Z)

be generators of the homology of E .

Then we can choose

ω1 =

∫
γ1

dx√
4x3 + ax + b

, ω2 =

∫
γ2

dx√
4x3 + ax + b

.
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Quasi-periods of E

The differential dx/y on E generates the space of holomorphic
1-forms on E (differentials of the first kind).
The differential x dx/y generates the space of differentials of the
second kind (differentials with poles but residues of 0).

We set

η1 =

∫
γ1

x dx√
4x3 + ax + b

, η2 =

∫
γ2

x dx√
4x3 + ax + b

,

and η1, η2 are called the quasi-periods of E .
η1, η2 arise simultaneously as special values of the Weierstrass
ζ-function and as periods of extensions of E by Ga.
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Period matrix of E

The period matrix of E is the matrix

P =

[
ω1 η1
ω2 η2

]
.

It provides a natural isomorphism

H1
sing(E ,C) ∼= H1

DR(E ,C).

Legendre Relation: From properties of elliptic functions, the
determinant of P is

ω1η2 − ω2η1 = ±2πi .
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Abelian varieties
Higher dimensional analogues of elliptic curves

An abelian variety A over C is a smooth projective variety that is
also a group variety.
Elliptic curves are abelian varieties of dimension 1.

Much like for Gm and elliptic curves, an abelian variety of
dimension d has a uniformization,

Cd / Λ ∼= A(C),

where Λ is a discrete lattice of rank 2d .
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The period matrix of an abelian variety

Let A be an abelian variety over C of dimension d .

As in the case of elliptic curves, there is a natural isomorphism,

H1
sing(A,C) ∼= H1

DR(A,C),

defined by period integrals, whose defining matrix P is called the
period matrix of A.

We have
P =

[
ωij

∣∣∣ ηij

]
∈ Mat2d (C),

where 1 ≤ i ≤ 2d , 1 ≤ j ≤ d .
The ωij ’s provide coordinates for the period lattice Λ.
The ηij ’s provide periods of extensions of A by Ga.
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Things Less Familiar
Transcendence in characteristic 0

Theorems of Hermite-Lindemann and Gelfond-Schneider

Schneider’s theorems on elliptic functions

Linear independence results

Grothendieck’s conjecture
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Transcendence from Gm

Theorem (Hermite-Lindemann 1870’s, 1880’s)

Let α ∈ Q, α 6= 0. Then exp(α) is transcendental over Q.

Examples
Each of the following is transcendental:

• e (α = 1)
• π (α = 2πi)
• log 2 (α = log 2)
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Hilbert’s Seventh Problem

Theorem (Gelfond-Schneider 1930’s)

Let α, β ∈ Q, with α 6= 0,1 and β /∈ Q. Then αβ is transcendental.

Examples
Each of the following is transcendental:

• 2
√

2 (α = 2, β =
√

2)
• eπ (eπ = (−1)−i )

• log 2
log 3

(
3

log 2
log 3 = 2

)
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Periods and quasi-periods of elliptic curves

Theorem (Schneider 1930’s)

Let E be an elliptic curve defined over Q,

E : y2 = x3 + ax + b, a,b ∈ Q.

The periods and quasi-periods of E,

ω1, ω2, η1, η2

are transcendental.
Let τ = ω1/ω2. Then either Q(τ)/Q is an imaginary quadratic
extension (CM) or a purely transcendental extension (non-CM).
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Linear independence
Linear forms in logarithms

Theorem (Baker 1960’s)

Let α1, . . . , αm ∈ Q. If log(α1), . . . , log(αm) are linearly independent
over Q, then

1, log(α1), . . . , log(αm)

are linearly independent over Q.

Extension of the Gelfond-Schneider theorem (m = 2).
Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970’s,
1980’s) extended this result to elliptic and abelian integrals.

Conjecture (Gelfond/Folklore)

Let α1, . . . , αm ∈ Q. If log(α1), . . . , log(αm) are linearly independent
over Q, then they are algebraically independent over Q.
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Grothendieck’s conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over Q. Then

tr. deg(Q(P)/Q) = dim MT(A),

where MT(A) ⊆ GL2d /Q is the Mumford-Tate group of A.

Let A be an elliptic curve.
One can show

dim MT(A) =

{
4 if End(A) = Z,
2 if End(A) 6= Z.

(G. Chudnovsky, 1970’s) If End(A) 6= Z, then Grothendieck’s
conjecture is true.
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Things Less Less Familiar

Function fields

Drinfeld modules
I The Carlitz module
I Drinfeld modules of rank 2

t-modules (higher dimensional Drinfeld modules)

Transcendence results
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Function fields

Let p be a fixed prime; q a fixed power of p.

A := Fq[θ] ←→ Z

k := Fq(θ) ←→ Q

k ←→ Q

k∞ := Fq((1/θ)) ←→ R

C∞ := k̂∞ ←→ C

|f |∞ = qdeg f ←→ | · |
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Twisted polynomials

Let F : C∞ → C∞ be the q-th power Frobenius map: F (x) = xq.
For a subfield Fq ⊆ K ⊆ C∞, the ring of twisted polynomials over
K is

K [F ] = polynomials in F with coefficients in K ,

subject to the conditions

Fc = cqF , ∀ c ∈ K .

In this way,

K [F ] ∼= {Fq-linear endomorphisms of K +}.

For x ∈ K and φ = a0 + a1F + · · · ar F r ∈ K [F ], we write

φ(x) := a0x + a1xq + · · ·+ ar xqr
.
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Drinfeld modules
Function field analogues of Gm and elliptic curves
Let Fq[t ] be a polynomial ring in t over Fq.

Definition
A Drinfeld module over is an Fq-algebra homomorphism,

ρ : Fq[t ]→ C∞[F ],

such that
ρ(t) = θ + a1F + · · · ar F r .

ρ makes C∞ into a Fq[t ]-module in the following way:

f ∗ x := ρ(f )(x), ∀f ∈ Fq[t ], x ∈ C∞.

If a1, . . . ,ar ∈ K ⊆ C∞, we say ρ is defined over K .
r is called the rank of ρ.
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The Carlitz module
The analogue of Gm

We define a Drinfeld module C : Fq[t ]→ C∞[F ] by

C(t) := θ + F .

Thus, for any x ∈ C∞,

C(t)(x) = θx + xq.
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Carlitz exponential

We set

expC(z) = z +
∞∑

i=1

zqi

(θqi − θ)(θqi − θq) · · · (θqi − θqi−1)
.

expC : C∞ → C∞ is entire, surjective, and Fq-linear.
Functional equation:

expC(θz) = θ expC(z) + expC(z)q,

expC(f (θ)z) = C(f )(expC(z)), ∀f (t) ∈ Fq[t ].
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of Fq[t ]-modules,

C∞
z 7→θz

��

expC // C∞
x 7→θx+xq

��
C∞

expC // C∞

The kernel of expC(z) is

ker(expC(z)) = Fq[θ]πq,

where

πq = θ
q−1
√
−θ

∞∏
i=1

(
1− θ1−qi

)−1
.
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of Fq[t ]-modules,

C∞
z 7→θz

��

expC // C∞
x 7→θx+xq

��
C∞

expC // C∞

The kernel of expC(z) is

ker(expC(z)) = Fq[θ]πq,

where

πq = θ
q−1
√
−θ

∞∏
i=1

(
1− θ1−qi

)−1
.

AWS 2008 (Lecture 1) Function Field Transcendence March 15, 2008 26 / 33



Wade’s result

Thus we have an exact sequence of Fq[t ]-modules,

0→ Fq[θ]πq → C∞
expC→ C∞ → 0.

Theorem (Wade 1941)

The Carlitz period πq is transcendental over k.
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Drinfeld modules of rank 2

Suppose ρ : Fq[t ]→ k [F ] is a rank 2 Drinfeld module defined over
k by

ρ(t) = θ + κF + λF 2.

Then there is an unique, entire, Fq-linear function

expρ : C∞ → C∞,

so that
expρ(f (θ)z) = ρ(f )(expρ(z)), ∀f ∈ Fq[t ].
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Periods of Drinfeld modules of rank 2

Furthermore, there are ω1, ω2 ∈ C∞ so that

ker(expρ(z)) = Fq[θ]ω1 + Fq[θ]ω2 =: Λ,

where Λ is a discrete Fq[θ]-submodule of C of rank 2.

Chicken vs. Egg:

expρ(z) = z
∏

06=ω∈Λ

(
1− z

ω

)
.

Again we have a uniformizing exact sequence of Fq[t ]-modules

0→ Λ→ C∞
expρ→ C∞ → 0.
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Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods η1, η2 ∈ C∞ for ρ
with the following properties (see notes):

η1, η2 arise as periods of extensions of ρ by Ga.
Legendre relation: ω1η2 − ω2η1 = ζπq for some ζ ∈ F×q .

Theorem (Yu 1980’s)

For a Drinfeld module ρ of rank 2 defined over k, the four quantities

ω1, ω2, η1, η2

are transcendental over k.
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t-modules
Higher dimensional Drinfeld modules

A t-module A of dimension d is an Fq-linear homomorphism,

A : Fq[t ]→ EndFq (Cd
∞) ∼= Matd (C∞[F ]),

such that
A(t) = θId + N + a0F + · · · ar F r ,

where N ∈ Matd (C∞) is nilpotent.
Thus Cd

∞ is given the structure of an Fq[t ]-module via

f ∗ x := A(f )(x), ∀f ∈ Fq[t ], x ∈ Cd
∞.
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Exponential functions of t-modules

There is a unique entire expA : Cd
∞ → Cd

∞ so that

expA((θId + N)z) = A(t)(expA(z)).

If expA is surjective, we have an exact sequence

0→ Λ→ Cd
∞

expA→ Cd
∞ → 0,

where Λ is a discrete Fq[t ]-submodule of Cd
∞.

Λ is called the period lattice of A.
Quasi-periods can also be defined (see notes).
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Yu’s Theorem of the Sub-t-module
Analogue of Wüstholz’s Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over k. Suppose u ∈ Cd
∞

satisfies expA(u) ∈ k
d
. Then the smallest vector space H ⊆ Cd

∞
defined over k which is invariant under θId + N and which contains u
has the property that

expA(H) ⊆ A(C∞),

is a sub-t-module of A.

Theorem (Yu 1997 (Linear independence of Carlitz logarithms))

Suppose α1, . . . , αm ∈ k. If logC(α1), . . . , logC(αm) ∈ C∞ are linearly
independent over k = Fq(θ), then

1, logC(α1), . . . , logC(αm)

are linearly independent over k.
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