Transcendence in Positive Characteristic

Difference Equations and Linear Independence

W. Dale Brownawell
Matthew Papanikolas

Penn State University
Texas A\&M University
Arizona Winter School 2008 March 16, 2008

Outline

(9) Functions on curves
(2) The function $\Omega(t)$
(3) The ABP-criterion
4) Difference equations

Functions on curves

- Rational functions
- Analytic and entire functions
- Frobenius twisting

Scalar quantities

Let p be a fixed prime; q a fixed power of p.

$$
\begin{array}{lll}
A:=\mathbb{F}_{q}[\theta] & \longleftrightarrow & \mathbb{Z} \\
k:=\mathbb{F}_{q}(\theta) & \longleftrightarrow & \mathbb{Q} \\
\bar{k} & \longleftrightarrow & \mathbb{Q} \\
k_{\infty}:=\mathbb{F}_{q}((1 / \theta)) & \longleftrightarrow & \mathbb{R} \\
\mathbb{C}_{\infty}:=\widehat{k_{\infty}} & \longleftrightarrow & \mathbb{C} \\
|f|_{\infty}=q^{\operatorname{deg} f} & \longleftrightarrow & |\cdot|
\end{array}
$$

Rational functions

- We select a variable t that is independent from θ. The rational function field $\mathbb{F}_{q}(t)$ is taken to be the function field of $\mathbb{P}^{1} / \mathbb{F}_{q}$:

$$
\mathbb{F}_{q}(t) \longleftrightarrow \mathbb{P}^{1} / \mathbb{F}_{q} .
$$

- Moreover, for any field $K \supseteq \mathbb{F}_{q}$,

$$
K(t) \longleftrightarrow \mathbb{P}^{1} / K
$$

- We will often take $K=\bar{k}$ or $K=\mathbb{C}_{\infty}$.

Anayltic functions

The Tate algebra

- The Tate algebra is defined to be the ring of functions in $\mathbb{C}_{\infty}[[t]]$ that are analytic on the closed unit disk:

$$
\mathbb{T}:=\left\{\left.\sum_{i \geq 0} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]]| | a_{i}\right|_{\infty} \rightarrow 0\right\}
$$

- \mathbb{T} is a p.i.d. with maximal ideals generated by $t-a$ for $|a|_{\infty} \leq 1$.
- Useful fact:

$$
\mathbb{T} \cap \mathbb{F}_{q}[[t]]=\mathbb{F}_{q}[t] .
$$

- We will take $\mathbb{L} \subseteq \mathbb{C}_{\infty}((t))$ to be the fraction field of \mathbb{T}.

Entire functions

- The ring \mathbb{E} of entire functions is defined to be

$$
\mathbb{E}:=\left\{\sum_{i \geq 0} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]] \left\lvert\, \begin{array}{c}
\sqrt[i]{\left|a_{i}\right|_{\infty}} \rightarrow 0 \\
{\left[k_{\infty}\left(a_{0}, a_{1}, a_{2}, \ldots\right): k_{\infty}\right]<\infty}
\end{array}\right.\right\}
$$

- The first condition implies that a given $f \in \mathbb{E}$ converges on all of \mathbb{C}_{∞}. It is equivalent to having

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \operatorname{ord}_{\infty}\left(a_{i}\right)=\infty
$$

- The second condition implies that $f\left(\overline{k_{\infty}}\right) \subseteq \overline{k_{\infty}}$.

Frobenius twisting

- Let $f=\sum a_{i} t^{i} \in \mathbb{C}_{\infty}((t))$. For any $n \in \mathbb{Z}$, we set

$$
f^{(n)}:=\sum a_{i}^{q^{n}} t^{i} \in \mathbb{C}_{\infty}((t))
$$

Thus $f \mapsto f^{(n)}$ has the effect of simply raising the coefficients of f to the q^{n}-th power.

Frobenius twisting

- Let $f=\sum a_{i} t^{i} \in \mathbb{C}_{\infty}((t))$. For any $n \in \mathbb{Z}$, we set

$$
f^{(n)}:=\sum a_{i}^{q^{n}} t^{i} \in \mathbb{C}_{\infty}((t))
$$

Thus $f \mapsto f^{(n)}$ has the effect of simply raising the coefficients of f to the q^{n}-th power.

- These maps are automorphism

$$
f \mapsto f^{(n)}: \mathbb{C}_{\infty}((t)) \xrightarrow{\sim} \mathbb{C}_{\infty}((t))
$$

which induce automorphisms of each of the following rings and fields:

$$
\bar{k}[t], \quad \mathbb{T}, \quad \bar{k}(t), \quad \mathbb{L}, \quad \mathbb{E}
$$

The automorphism σ

$\sigma: f \mapsto f^{(-1)}$

- When $n=-1$, we call this automorphism σ : for $f=\sum_{i} a_{i} t^{i}$,

$$
\sigma(f)=f^{(-1)}=\sum_{i} a_{i}^{1 / q} t^{i}
$$

- Moreover, σ has the following fixed rings and fields:

$$
\mathbb{C}_{\infty}((t))^{\sigma}=\mathbb{F}_{q}((t)), \quad \bar{k}(t)^{\sigma}=\mathbb{F}_{q}(t), \quad \mathbb{T}^{\sigma}=\mathbb{F}_{q}[t], \quad \mathbb{L}^{\sigma}=\mathbb{F}_{q}(t)
$$

The function $\Omega(t)$

- Fix $\zeta_{\theta}:=\sqrt[9-1]{-\theta}=\exp _{C}\left(\pi_{q} / \theta\right)$.
- We define an infinite product,

$$
\Omega(t):=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-\frac{t}{\theta^{q^{i}}}\right) \in \mathbb{E} \cap k_{\infty}\left(\zeta_{\theta}\right)[[t]]
$$

The function $\Omega(t)$

- Fix $\zeta_{\theta}:=\sqrt[9-1]{-\theta}=\exp _{C}\left(\pi_{q} / \theta\right)$.
- We define an infinite product,

$$
\Omega(t):=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-\frac{t}{\theta^{q^{i}}}\right) \in \mathbb{E} \cap k_{\infty}\left(\zeta_{\theta}\right)[[t]]
$$

- Functional equation:

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t)
$$

The function $\Omega(t)$

- Fix $\zeta_{\theta}:=\sqrt[q-1]{-\theta}=\exp _{C}\left(\pi_{q} / \theta\right)$.
- We define an infinite product,

$$
\Omega(t):=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-\frac{t}{\theta^{q^{i}}}\right) \in \mathbb{E} \cap k_{\infty}\left(\zeta_{\theta}\right)[[t]]
$$

- Functional equation:

$$
\begin{gathered}
\Omega^{(-1)}(t)=(t-\theta) \Omega(t) \\
{\left[\Omega^{(-1)}(t)=\zeta_{\theta}^{-1}\left(1-\frac{t}{\theta}\right) \prod_{i=1}^{\infty}\left(1-\frac{t}{\theta^{a^{i}}}\right)\right]}
\end{gathered}
$$

The function $1 / \Omega(t)$

- Recall $\Omega(t)=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right)$
- The zeros of $\Omega(t)$ in \mathbb{C}_{∞} are precisely $t=\theta^{q}, t=\theta^{q^{2}}, \ldots$, each of which has absolute value >1. Therefore,

$$
\frac{1}{\Omega(t)} \in \mathbb{T}
$$

and in fact $1 / \Omega(t)$ converges on $|\alpha|_{\infty}<\left|\theta^{q}\right|_{\infty}$.

The function $1 / \Omega(t)$

- Recall $\Omega(t)=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right)$
- The zeros of $\Omega(t)$ in \mathbb{C}_{∞} are precisely $t=\theta^{q}, t=\theta^{q^{2}}, \ldots$, each of which has absolute value >1. Therefore,

$$
\frac{1}{\Omega(t)} \in \mathbb{T}
$$

and in fact $1 / \Omega(t)$ converges on $|\alpha|_{\infty}<\left|\theta^{q}\right|_{\infty}$.

- If we compare with the Carlitz period,

$$
\pi_{q}=\theta \zeta_{\theta} \prod_{i=1}^{\infty}\left(1-\theta^{1-q^{i}}\right)^{-1}
$$

then we see

$$
\frac{1}{\Omega(\theta)}=-\pi_{q}
$$

Summary of $\Omega(t)$

$$
\Omega(t)=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right) \in \mathbb{E}
$$

Summary of $\Omega(t)$

$$
\Omega(t)=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right) \in \mathbb{E}
$$

- Functional equation:

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t) .
$$

Summary of $\Omega(t)$

$$
\Omega(t)=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right) \in \mathbb{E}
$$

- Functional equation:

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t) .
$$

- Specialization:

$$
\Omega(\theta)=-\frac{1}{\pi_{q}}
$$

The "ABP-criterion"

- Theorem of Anderson, Brownawell, P.
- Proof of Wade's theorem

Theorem (Anderson, Brownawell, P. 2004)
Let $r \geq 1$. Fix a matrix $\Phi=\Phi(t) \in$ Mat $_{r \times r}(\bar{k}[t])$, such that $\operatorname{det}(\Phi)=c(t-\theta)^{s}$ for some $c \in \bar{k}^{\times}$and $s \geq 0$.

Theorem (Anderson, Brownawell, P. 2004)

Let $r \geq 1$. Fix a matrix $\Phi=\Phi(t) \in$ Mat $_{r \times r}(\bar{k}[t])$, such that $\operatorname{det}(\Phi)=c(t-\theta)^{s}$ for some $c \in \bar{k}^{\times}$and $s \geq 0$. Suppose we have also a column vector of entire functions, $\psi=\psi(t) \in$ Mat $_{r \times 1}(\mathbb{E})$, satisfying the functional equations

$$
\psi^{(-1)}=\Phi \psi .
$$

Theorem (Anderson, Brownawell, P. 2004)

Let $r \geq 1$. Fix a matrix $\Phi=\Phi(t) \in$ Mat $_{r \times r}(\bar{k}[t])$, such that $\operatorname{det}(\Phi)=c(t-\theta)^{s}$ for some $c \in \bar{k}^{\times}$and $s \geq 0$. Suppose we have also a column vector of entire functions, $\psi=\psi(t) \in$ Mat $_{r \times 1}(\mathbb{E})$, satisfying the functional equations

$$
\psi^{(-1)}=\Phi \psi .
$$

Now suppose that there is $a \bar{k}$-linear relation among the entries of $\psi(\theta)$; that is, there is a row vector $\xi \in \mathrm{Mat}_{1 \times r}(\bar{k})$ so that

$$
\xi \psi(\theta)=0 .
$$

Theorem (Anderson, Brownawell, P. 2004)

Let $r \geq 1$. Fix a matrix $\Phi=\Phi(t) \in$ Mat $_{r \times r}(\bar{k}[t])$, such that $\operatorname{det}(\Phi)=c(t-\theta)^{s}$ for some $c \in \bar{k}^{\times}$and $s \geq 0$. Suppose we have also a column vector of entire functions, $\psi=\psi(t) \in$ Mat $_{r \times 1}(\mathbb{E})$, satisfying the functional equations

$$
\psi^{(-1)}=\Phi \psi .
$$

Now suppose that there is $a \bar{k}$-linear relation among the entries of $\psi(\theta)$; that is, there is a row vector $\xi \in \mathrm{Mat}_{1 \times r}(\bar{k})$ so that

$$
\xi \psi(\theta)=0 .
$$

Then there is a row vector of polynomials $P(t) \in \operatorname{Mat}_{1 \times r}(\bar{k}[t])$ so that

$$
P(t) \psi(t)=0, \quad P(\theta)=\xi
$$

Wade's theorem revisited

Theorem (Wade 1941)
The Carlitz period π_{q} is transcendental over \bar{k}.

Wade's theorem revisited

Theorem (Wade 1941)
The Carlitz period π_{q} is transcendental over \bar{k}.

- Consider

$$
\Phi=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & t-\theta & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (t-\theta)^{m}
\end{array}\right], \quad \psi=\left[\begin{array}{c}
1 \\
\Omega(t) \\
\vdots \\
\Omega(t)^{m}
\end{array}\right] .
$$

- The functional equation $\Omega^{(-1)}=(t-\theta) \Omega$ implies

$$
\psi^{(-1)}=\Phi \psi .
$$

- Use ABP-criterion with Φ, ψ to show π_{q} cannot satisfy an algebraic relation over \bar{k}.
- Suppose

$$
\xi_{0}-\frac{\xi_{1}}{\pi_{q}}-\cdots+(-1)^{m} \frac{\xi_{m}}{\pi_{q}^{m}}=0, \quad \xi_{i} \in \bar{k}, \xi_{0} \xi_{m} \neq 0
$$

- Suppose

$$
\xi_{0}-\frac{\xi_{1}}{\pi_{q}}-\cdots+(-1)^{m} \frac{\xi_{m}}{\pi_{q}^{m}}=0, \quad \xi_{i} \in \bar{k}, \xi_{0} \xi_{m} \neq 0
$$

- If we let $\xi:=\left[\xi_{0}, \ldots, \xi_{m}\right]$, then

$$
\xi \psi(\theta)=0 .
$$

- Suppose

$$
\xi_{0}-\frac{\xi_{1}}{\pi_{q}}-\cdots+(-1)^{m} \frac{\xi_{m}}{\pi_{q}^{m}}=0, \quad \xi_{i} \in \bar{k}, \quad \xi_{0} \xi_{m} \neq 0
$$

- If we let $\xi:=\left[\xi_{0}, \ldots, \xi_{m}\right]$, then

$$
\xi \psi(\theta)=0 .
$$

- The ABP-criterion implies there exist polynomials $P_{0}(t), \ldots, P_{m}(t) \in \bar{k}[t]$ so that

$$
P_{0}(t)+P_{1}(t) \Omega(t)+\cdots+P_{m}(t) \Omega(t)^{m}=0, \quad P_{i}(\theta)=\xi_{i} .
$$

- Suppose

$$
\xi_{0}-\frac{\xi_{1}}{\pi_{q}}-\cdots+(-1)^{m} \frac{\xi_{m}}{\pi_{q}^{m}}=0, \quad \xi_{i} \in \bar{k}, \quad \xi_{0} \xi_{m} \neq 0
$$

- If we let $\xi:=\left[\xi_{0}, \ldots, \xi_{m}\right]$, then

$$
\xi \psi(\theta)=0 .
$$

- The ABP-criterion implies there exist polynomials $P_{0}(t), \ldots, P_{m}(t) \in \bar{k}[t]$ so that

$$
P_{0}(t)+P_{1}(t) \Omega(t)+\cdots+P_{m}(t) \Omega(t)^{m}=0, \quad P_{i}(\theta)=\xi_{i}
$$

- Since $P_{0}(t) \neq 0$ and $P_{m}(t) \neq 0$, it follows that $P_{0}(t)$ must vanish at the infinitely many zeros of $\Omega(t)$. Contradiction.

Difference equations

- Definitions of difference equations and their solution spaces
- Example for Carlitz logarithms
- Other examples in brief
- Carlitz zeta values
- Periods and quasi-periods of Drinfeld modules

Difference equations

- Fix a matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$. We consider the system of equations

$$
\psi^{(-1)}=\Phi \psi, \quad(\sigma(\psi)=\Phi \psi)
$$

for $\psi \in$ Mat $_{r \times 1}(\mathbb{L})$. (Recall $\mathbb{L}=$ fraction field of the Tate algebra \mathbb{T}.)

- Define the space

$$
\operatorname{Sol}(\Phi)=\left\{\psi \in \operatorname{Mat}_{r \times 1}(\mathbb{L}) \mid \psi^{(-1)}=\Phi \psi\right\}
$$

It is an $\mathbb{F}_{q}(t)$-vector space.

- The entries of $\operatorname{Sol}(\Phi)$ are then candidates for the application of the ABP-criterion.

Lemma

The space $\operatorname{Sol}(\Phi)=\left\{\psi \in \operatorname{Mat}_{r \times 1}(\mathbb{L}) \mid \psi^{(-1)}=\Phi \psi\right\}$ satisfies

$$
\operatorname{dim}_{\mathbb{F}_{q}(t)} \operatorname{Sol}(\Phi) \leq r .
$$

- We will show that if $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ are linearly independent over $\mathbb{F}_{q}(t)$, then they are linearly independent over \mathbb{L}.

Lemma

The space $\operatorname{Sol}(\Phi)=\left\{\psi \in \operatorname{Mat}_{r \times 1}(\mathbb{L}) \mid \psi^{(-1)}=\Phi \psi\right\}$ satisfies

$$
\operatorname{dim}_{\mathbb{F}_{q}(t)} \operatorname{Sol}(\Phi) \leq r .
$$

- We will show that if $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ are linearly independent over $\mathbb{F}_{q}(t)$, then they are linearly independent over \mathbb{L}.
- Suppose $m \geq 2$ is minimal so that we have $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ linearly independent over $\mathbb{F}_{q}(t)$ but

$$
0=\sum_{i=1}^{m} f_{i} \psi_{i}, \quad f_{i} \in \mathbb{L}, f_{1}=1
$$

Lemma

The space $\operatorname{Sol}(\Phi)=\left\{\psi \in \operatorname{Mat}_{r \times 1}(\mathbb{L}) \mid \psi^{(-1)}=\Phi \psi\right\}$ satisfies

$$
\operatorname{dim}_{\mathbb{F}_{q}(t)} \operatorname{Sol}(\Phi) \leq r .
$$

- We will show that if $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ are linearly independent over $\mathbb{F}_{q}(t)$, then they are linearly independent over \mathbb{L}.
- Suppose $m \geq 2$ is minimal so that we have $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ linearly independent over $\mathbb{F}_{q}(t)$ but

$$
0=\sum_{i=1}^{m} f_{i} \psi_{i}, \quad f_{i} \in \mathbb{L}, f_{1}=1 .
$$

- Multiply both sides by Φ :

$$
0=\sum_{i=1}^{m} f_{i} \Phi \psi_{i}=\sum_{i=1}^{m} f_{i} \psi_{i}^{(-1)}
$$

Lemma

The space $\operatorname{Sol}(\Phi)=\left\{\psi \in \operatorname{Mat}_{r \times 1}(\mathbb{L}) \mid \psi^{(-1)}=\Phi \psi\right\}$ satisfies

$$
\operatorname{dim}_{\mathbb{F}_{q}(t)} \operatorname{Sol}(\Phi) \leq r .
$$

- We will show that if $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ are linearly independent over $\mathbb{F}_{q}(t)$, then they are linearly independent over \mathbb{L}.
- Suppose $m \geq 2$ is minimal so that we have $\psi_{1}, \ldots, \psi_{m} \in \operatorname{Sol}(\Phi)$ linearly independent over $\mathbb{F}_{q}(t)$ but

$$
0=\sum_{i=1}^{m} f_{i} \psi_{i}, \quad f_{i} \in \mathbb{L}, f_{1}=1 .
$$

- Multiply both sides by Φ :

$$
0=\sum_{i=1}^{m} f_{i} \Phi \psi_{i}=\sum_{i=1}^{m} f_{i} \psi_{i}^{(-1)} .
$$

- Twist and subtract the two equations.
- We obtain

$$
0=\sum_{i=1}^{m}\left(f_{i}-f_{i}^{(1)}\right) \psi_{i}=\sum_{i=2}^{m}\left(f_{i}-f_{i}^{(1)}\right) \psi_{i}
$$

- By minimality of m, we have $f_{i}=f_{i}^{(-1)}$. Thus each

$$
f_{i} \in \mathbb{L}^{\sigma}=\mathbb{F}_{q}(t)
$$

Fundamental matrix for ϕ

Definition

Given $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$, a matrix $\psi \in \mathrm{GL}_{r}(\mathbb{L})$ is a fundamental matrix for Φ if

$$
\psi^{(-1)}=\Phi \psi .
$$

- In this case,

$$
\operatorname{dim}_{\mathbb{F}_{q}(t)} \operatorname{Sol}(\Phi)=r
$$

- The columns of Ψ form a basis for $\operatorname{Sol}(\Phi)$.

$\Omega(t)$ yet again

- Here $r=1$. We take

$$
\Phi=t-\theta, \quad \Omega(t)=\zeta_{\theta}^{-q} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right)
$$

- Difference equation:

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t)
$$

- Specialization:

$$
\Omega(\theta)=-\frac{1}{\pi_{q}}
$$

Carlitz logarithms

- Recall the Carlitz exponential:

$$
\exp _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta \theta^{q^{i-1}}\right)}
$$

Carlitz logarithms

- Recall the Carlitz exponential:

$$
\exp _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta^{q^{i-1}}\right)}
$$

- Its formal inverse is the Carlitz logarithm,

$$
\log _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta-\theta^{q}\right)\left(\theta-\theta^{q^{2}}\right) \cdots\left(\theta-\theta^{q^{i}}\right)}
$$

- $\log _{C}(z)$ converges for $|z|_{\infty}<|\theta|^{q /(q-1)}$ and satisfies

$$
\theta \log _{C}(z)=\log _{C}(\theta z)+\log _{C}\left(z^{q}\right)
$$

The function $L_{\alpha}(t)$

- For $\alpha \in \bar{k},|\alpha|_{\infty}<|\theta|^{q /(q-1)}$, we define

$$
L_{\alpha}(t)=\alpha+\sum_{i=1}^{\infty} \frac{\alpha^{q^{i}}}{\left(t-\theta^{q}\right)\left(t-\theta^{q^{2}}\right) \cdots\left(t-\theta^{q^{i}}\right)} \in \mathbb{T}
$$

which converges up to $\left|\theta^{q}\right|_{\infty}$.

The function $L_{\alpha}(t)$

- For $\alpha \in \bar{k},|\alpha|_{\infty}<|\theta|^{q /(q-1)}$, we define

$$
L_{\alpha}(t)=\alpha+\sum_{i=1}^{\infty} \frac{\alpha^{q^{i}}}{\left(t-\theta^{q}\right)\left(t-\theta^{q^{2}}\right) \cdots\left(t-\theta^{q^{i}}\right)} \in \mathbb{T}
$$

which converges up to $\left|\theta^{q}\right|_{\infty}$.

- Connection with Carlitz logarithms:

$$
L_{\alpha}(\theta)=\log _{C}(\alpha)
$$

The function $L_{\alpha}(t)$

- For $\alpha \in \bar{k},|\alpha|_{\infty}<|\theta|^{q /(q-1)}$, we define

$$
L_{\alpha}(t)=\alpha+\sum_{i=1}^{\infty} \frac{\alpha^{q^{i}}}{\left(t-\theta^{q}\right)\left(t-\theta^{q^{2}}\right) \cdots\left(t-\theta^{q^{i}}\right)} \in \mathbb{T}
$$

which converges up to $\left|\theta^{q}\right|_{\infty}$.

- Connection with Carlitz logarithms:

$$
L_{\alpha}(\theta)=\log _{C}(\alpha)
$$

- Functional equation:

$$
L_{\alpha}^{(-1)}=\alpha^{(-1)}+\frac{L_{\alpha}}{t-\theta}
$$

Difference equations for $L_{\alpha}(t)$

- If we set

$$
\Phi=\left[\begin{array}{cc}
t-\theta & 0 \\
\alpha^{1 / q}(t-\theta) & 1
\end{array}\right] \in \operatorname{Mat}_{2}(\bar{k}[t]), \quad \psi=\left[\begin{array}{cc}
\Omega & 0 \\
\Omega L_{\alpha} & 1
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{E})
$$

then

$$
\Psi^{(-1)}=\Phi \psi .
$$

Difference equations for $L_{\alpha}(t)$

- If we set

$$
\Phi=\left[\begin{array}{cc}
t-\theta & 0 \\
\alpha^{1 / q}(t-\theta) & 1
\end{array}\right] \in \operatorname{Mat}_{2}(\bar{k}[t]), \quad \Psi=\left[\begin{array}{cc}
\Omega & 0 \\
\Omega L_{\alpha} & 1
\end{array}\right] \in \operatorname{Mat}_{2}(\mathbb{E})
$$

then

$$
\Psi^{(-1)}=\Phi \Psi .
$$

- Specialization at $t=\theta$:

$$
\Psi(\theta)^{-1}=\left[\begin{array}{cc}
-\pi_{q} & 0 \\
-\log _{C}(\alpha) & 1
\end{array}\right]
$$

Carlitz zeta values

- For a positive integer n,

$$
\zeta_{C}(n)=\sum_{\substack{a \in \mathbb{F}_{q}[\theta] \\ a \text { monic }}} \frac{1}{a^{n}} \in k_{\infty}
$$

- Euler-Carlitz relations: If $(q-1) \mid n$, then

$$
\zeta_{C}(n)=r_{n} \pi_{q}^{n}, \quad r_{n} \in \mathbb{F}_{q}(\theta)
$$

For example,

$$
\zeta_{c}(q-1)=\frac{\pi_{q}^{q-1}}{\theta-\theta^{q}}
$$

Anderson, Thakur, and $\zeta_{C}(n)$

Theorem (Anderson-Thakur 1990)
There exist (explicit) $h_{0}, \ldots, h_{\ell} \in \mathbb{F}_{q}[\theta]$ so that

$$
\zeta_{C}(n)=\frac{1}{\Gamma_{n}} \sum_{i=0}^{\ell} h_{i} \log _{C}^{[n]}\left(\theta^{i}\right)
$$

Carlitz polylogarithm:

$$
\log _{C}^{[n]}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left[\left(\theta-\theta^{q}\right)\left(\theta-\theta^{q^{2}}\right) \cdots\left(\theta-\theta^{q^{i}}\right)\right]^{n}}
$$

Carlitz factorial: $\Gamma_{n} \in \mathbb{F}_{q}[\theta]$

Difference equations for $\zeta_{c}(n)$

If we let

$$
L_{\alpha, n}(t)=\alpha+\sum_{i=1}^{\infty} \frac{\alpha^{q^{i}}}{\left[\left(t-\theta^{q}\right)\left(t-\theta^{q^{2}}\right) \cdots\left(t-\theta^{q^{i}}\right)\right]^{n}},
$$

and take

$$
\Phi=\left[\begin{array}{cccc}
(t-\theta)^{n} & 0 & \cdots & 0 \\
\left(\theta^{0}\right)^{(-1)}(t-\theta)^{n} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\left(\theta^{\ell}\right)^{(-1)}(t-\theta)^{n} & 0 & \cdots & 1
\end{array}\right], \quad \Psi=\left[\begin{array}{cccc}
\Omega^{n} & 0 & \cdots & 0 \\
\Omega^{n} L_{\theta^{0}, n} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\Omega^{n} L_{\theta^{\ell}, n} & 0 & \cdots & 1
\end{array}\right],
$$

then

$$
\psi^{(-1)}=\Phi \psi .
$$

Furthermore, $\zeta_{C}(n)$ is essentially an $\mathbb{F}_{q}(\theta)$-linear combination of the first column of $\Psi(\theta)$.

Periods and quasi-periods of rank 2 Drinfeld modules

Let $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ be a rank 2 Drinfeld module such that

$$
\rho(t)=\theta+\kappa F+F^{2} .
$$

Suppose

$$
\operatorname{ker}\left(\exp _{\rho}(z)\right)=\mathbb{F}_{q}[\theta] \omega_{1}+\mathbb{F}_{q}[\theta] \omega_{2} \subseteq \mathbb{C}_{\infty} .
$$

For $i=1,2$, set

$$
s_{j}(t)=-\sum_{i=0}^{\infty} \exp _{\rho}\left(\frac{\omega_{j}}{\theta^{i+1}}\right) t^{i} \in \mathbb{T} .
$$

Difference equations for rank 2 Drinfeld modules

- We let

$$
\Phi=\left[\begin{array}{cc}
0 & 1 \\
t-\theta & -\kappa^{1 / q}
\end{array}\right], \quad \Psi=\left[\begin{array}{cc}
0 & 1 \\
1 & -\kappa
\end{array}\right]\left[\begin{array}{cc}
s_{1}^{(1)} & s_{1}^{(2)} \\
s_{2}^{(1)} & s_{2}^{(2)}
\end{array}\right]^{-1} .
$$

- Then

$$
\psi^{(-1)}=\Phi \psi,
$$

and

$$
\Psi(\theta)^{-1}=\left[\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right] .
$$

