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Scalar quantities

Let p be a fixed prime; q a fixed power of p.

A := Fq[θ] ←→ Z

k := Fq(θ) ←→ Q

k ←→ Q

k∞ := Fq((1/θ)) ←→ R

C∞ := k̂∞ ←→ C

|f |∞ = qdeg f ←→ | · |
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Functions

Rational functions:

Fq(t), k(t), C∞(t).

Analytic functions:

T :=

{∑
i≥0

ai t i ∈ C∞[[t ]]
∣∣∣∣ |ai |∞ → 0

}
.

and
L := fraction field of T.

Entire functions:

E :=

{∑
i≥0

ai t i ∈ C∞[[t ]]
∣∣∣∣ i

√
|ai |∞ → 0,

[k∞(a0,a1,a2, . . . ) : k∞] <∞

}
.
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The ring k [t , σ]

The ring k [t ,σ] is the non-commutative polynomial ring in t and σ with
coefficients in k , subject to

tc = ct , tσ = σt , σc = c1/qσ, ∀ c ∈ k .

Thus for any f ∈ k [t ],

σf = f (−1)σ = σ(f )σ.
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Anderson t-motives

Definition
An Anderson t-motive M is a left k [t ,σ]-module such that

M is free and finitely generated over k [t ];
M is free and finitely generated over k [σ];
(t − θ)nM ⊆ σM for n� 0.

Anderson t-motives form a category in which morphisms are simply
morphisms of left k [t ,σ]-modules.
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Connections with Drinfeld modules

Theorem (Anderson 1986)
The category of Anderson t-motives contains the categories of Drinfeld
modules and (abelian) t-modules over k as full subcategories.

Suppose M is an Anderson t-Motive that corresponds to a Drinfeld
module (or t-module) ρ : Fq[t ]→ k [F ]. How do we recover ρ from M?

ρ(k) ∼=
M

(σ − 1)M
.
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The Carlitz motive

Let C = k [t ] and define a left k [σ]-module structure on C by setting

σ(f ) = (t − θ)f (−1), ∀f ∈ C.

For x ∈ k , we see that

tx = θx + (t − θ)x = θx + σ(xq)

= θx + xq + (σ − 1)(xq)

= C(t)(x) + (σ − 1)(xq).

So as Fq[t ]-modules,

Carlitz module ∼=
C

(σ − 1)C
.
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Representations of σ

Suppose M is an Anderson t-motive and that m1, . . . ,mr ∈ M form a
k [t ]-basis of M. Let

m =

m1
...

mr

 .
Then we can define Φ ∈ Matr (k [t ]) by

σm =

σm1
...

σmr

 = Φ

m1
...

mr

 .
We say that Φ represents multiplication by σ on M.
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t-Motives for rank 2 Drinfeld modules

Suppose that ρ : Fq[t ]→ k [F ] is a rank 2 Drinfeld module with

ρ(t) = θ + κF + F 2.

Suppose that M = Mat1×2(k [t ]) is the Anderson t-motive with
multiplication by σ represented by

Φ =

[
0 1

t − θ −κ1/q

]
.

Then
ρ ∼=

M
(σ − 1)M

.
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Indeed,

t [x ,0] = [tx ,0] = [tx + κxq,−κ(−1)x ] + [−κxq, κ(−1)x ]

= [tx + κxq,−κ1/qx ] + (σ − 1)[κxq,0]

= [θx + κxq + xq2
,0] + [(t − θ)x − xq2

,−κ1/qx ]

+ (σ − 1)[κxq,0]

= [θx + κxq + xq2
,0]

+ (σ − 1)[κxq,0] + (σ2 − 1)[xq2
,0].
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Rigid analytic triviality

In the examples we have seen, we have the following chain of
constructions:{

Drinfeld module
or t-module ρ

}
=⇒

{
t-motive M

}
=⇒

{
Φ ∈ Matr (k [t ])
representing σ

}
(?)

=⇒
{

Ψ ∈ Matr (E),
Ψ(−1) = ΦΨ

}
=⇒

{
Ψ(θ)−1 provides
periods of ρ

}
.

Everything goes through fine, as long as we can do (?).
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Rigid analytic triviality

Definition
An Anderson t-motive M is rigid analytically trivial if for Φ ∈ Matr (k [t ])
representing multiplication by σ on M, there exists a (fundamental
matrix)

Ψ ∈ Matr (E) ∩GLr (T)

so that
Ψ(−1) = ΦΨ.

A deep theorem of Anderson proves the following equivalence,{
Drinfeld module or t-
module is uniformizable

}
⇐⇒

{
t-motive M is rigid
analytically trivial

}
.
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Difference Galois groups

Definitions and constructions
Properties
Connections with t-motives/Drinfeld modules
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Preliminaries

We will work in some generality. We fix fields K ⊆ L with an
automorphism σ : L ∼→ L such that

σ(K ) ⊆ K ;
L/K is separable;
Lσ = K σ =: E .

The example to keep in mind of course is (E ,K ,L) = (Fq(t), k(t),L).
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Σ and Λ

We suppose that we have matrices Φ ∈ GLr (K ) and Ψ ∈ GLr (L) so
that

σ(Ψ) = ΦΨ.

Let X = (Xij) denote an r × r matrix of variables. Define a K -algebra
homomorphism,

ν = (Xij 7→ Ψij) : K [X ,1/det X ]→ L.

Let Σ = im ν and take Λ for its fraction field in L:

Σ = K [Ψ,1/det Ψ], Λ = K (Ψ).

Additional hypothesis: K is algebraically closed in Λ. Generally
holds in the case (Fq(t), k(t),L).
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The Galois group Γ

Let Z ⊆ GLr/K be the smallest K -subscheme such that Ψ ∈ Z (L).
Thus,

Z ∼= Spec Σ (as K -schemes).

Now set Ψ1, Ψ2 ∈ GLr (L⊗K L) so that

(Ψ1)ij = Ψij ⊗ 1, (Ψ2)ij = 1⊗Ψij ,

and set Ψ̃ = Ψ−1
1 Ψ2 ∈ GLr (L⊗K L).

Define an E-algebra map,

µ = (Xij 7→ Ψ̃ij) : E [X ,1/det X ]→ L⊗K L,

which defines a closed E-subscheme Γ of GLr/E .
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Working hypotheses for Γ and Z

Analogies with Galois groups of differential equations lead to the
following working hypotheses:

Z (L) should be a left coset for Γ.

Since Ψ ∈ Z (L), we should have

Γ(L) = Ψ−1Z (L).

This isomorphism should induce an isomorphism of K -schemes,

(α, β) 7→ (α, αβ) : Z × Γ
∼→ Z × Z .

Everything should be done in such a way as to be defined over the
smallest field possible (say E , K , or L).
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The difference Galois group Γ

Theorem (P. 2008)
Γ is a closed E-subgroup scheme of GLr/E .
Z is stable under right-multiplication by ΓK and is a ΓK -torsor.
The K -scheme Z is absolutely irreducible and is smooth over K .
The E-scheme Γ is absolutely irreducible and is smooth over E.
The dimension of Γ over E is equal to the transcendence degree
of Λ over K .
Γ(E) ∼= Autσ(Λ/K ).
If every element of E is fixed by some power of σ, then the
elements of Λ fixed by Γ(E) are precisely K .
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Connections with t-motives

Given a rigid analytically trivial Anderson t-motive M, we form

M := k(t)⊗k [t] M.

Then M carries the structure of a left k(t)[σ,σ−1]-module with
M is a f.d. k(t)-vector space;
multiplication by σ on M is represented by a matrix Φ ∈ GLr (k(t))
that has a fundamental matrix Ψ ∈ GLr (L).

Proposition (P. 2008)
The objects just described form a neutral Tannakian category over
Fq(t) with fiber functor

ω(M) = (L⊗k(t) M)σ.
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Category of t-motives

“neutral Tannakian category over Fq(t)”⇐⇒ category of
representations of an affine group scheme over Fq(t).
We define the category of t-motives to be the Tannakian
subcategory generated by all Anderson t-motives.

Theorem (P. 2008)

Let M be a t-motive. Suppose that Φ ∈ GLr (k(t)) represents
multiplication by σ on M and that Ψ ∈ GLr (L) is a rigid analytic
trivialization for Φ. Then the Galois group ΓΨ associated to the
difference equations

Ψ(−1) = ΦΨ

is naturally isomorphic to the group ΓM associated to M via
Tannakian duality.
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Algebraic independence

Main theorem

Sketch of the proof
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Galois groups and transcendence

Theorem (P. 2008)
Let M be a t-motive, and let ΓM be its associated group via Tannakian
duality. Suppose that Φ ∈ GLr (k(t)) ∩Matr (k [t ]) represents
multiplication by σ on M and that det Φ = c(t − θ)s, c ∈ k

×
.

Let Ψ be a
rigid analytic trivialization of Φ in GLr (T) ∩Matr (E). Finally let

L = k(Ψ(θ)) ⊆ k∞.

Then
tr. degk L = dim ΓM .

Remarks: If M arises from an actual Anderson t-motive, then the
hypotheses of the theorem are automatically satisfied.

In practice to calculate dim ΓM , we calculate ΓΨ.
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Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

Fix d ≥ 1. For each n ≥ 1, the entries of the Kronecker product,

Ψ⊗n,

are all degree n monomials in the entries of Ψ.

Let ψ be the column vector whose entries are the concatenation of
1 and each of the columns of Ψ⊗n for n ≤ d . Let

Φ = [1]⊕ Φ⊕r ⊕ (Φ⊗2)⊕r2 ⊕ · · · ⊕ (Φ⊗d )⊕rd
.

Then
ψ

(−1)
= Φψ.
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Any polynomial relations over k among the entries of Ψ(θ) will
eventually appear as a k -linear relation among the entries of ψ(θ),
once d is large enough.

Use the ABP-criterion to show that

dimk Qd = dimk(t) Sd ,

where
I Qd is the k -span of the entries of ψ(θ);
I Sd is the k(t)-span of the entries of ψ.

Once we show this for each d , the equality of transcendence
degrees follows (by a comparison of Hilbert series).
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Wade’s theorem redux
πq is transcendental

Work in the setting of the Carlitz motive C with r = 1; Φ = t − θ;
Ψ = Ω(t):

Ω(−1)(t) = (t − θ)Ω(t).

tr. degk(t) k(t)(Ω) = 1

The Galois group Γ in this case is Gm = GL1/Fq(t):

Gm(Fq(t)) = Fq(t)× ∼= Autσ(k(t)(Ω)/k(t))

via

γ ∈ Fq(t)×, h(t ,Ω) ∈ k(t)(Ω) ⇒ γ ∗ h(t ,Ω) = h(t ,Ωγ).

Previous theorem⇒

tr. degk k(Ψ(θ)) = tr. degk k(πq) = dim Γ = 1.
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