Transcendence in Positive Characteristic
 t-Motives and Difference Galois Groups

W. Dale Brownawell
Matthew Papanikolas

Penn State University
Texas A\&M University
Arizona Winter School 2008 March 17, 2008

Outline

(9) t-Motives
(2) Difference Galois groups
(3) Algebraic independence

t-Motives

- Definitions
- Connections with Drinfeld modules and t-modules
- Rigid analytic triviality

Scalar quantities

Let p be a fixed prime; q a fixed power of p.

$$
\begin{array}{lll}
A:=\mathbb{F}_{q}[\theta] & \longleftrightarrow & \mathbb{Z} \\
k:=\mathbb{F}_{q}(\theta) & \longleftrightarrow & \mathbb{Q} \\
\bar{k} & \longleftrightarrow & \mathbb{Q} \\
k_{\infty}:=\mathbb{F}_{q}((1 / \theta)) & \longleftrightarrow & \mathbb{R} \\
\mathbb{C}_{\infty}:=\widehat{k_{\infty}} & \longleftrightarrow & \mathbb{C} \\
|f|_{\infty}=q^{\operatorname{deg} f} & \longleftrightarrow & |\cdot|
\end{array}
$$

Functions

- Rational functions:

$$
\mathbb{F}_{q}(t), \quad \bar{k}(t), \quad \mathbb{C}_{\infty}(t)
$$

- Analytic functions:

$$
\mathbb{T}:=\left\{\left.\sum_{i \geq 0} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]]| | a_{i}\right|_{\infty} \rightarrow 0\right\}
$$

and

$$
\mathbb{L}:=\text { fraction field of } \mathbb{T} \text {. }
$$

- Entire functions:

$$
\mathbb{E}:=\left\{\sum_{i \geq 0} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]] \left\lvert\, \begin{array}{c}
\sqrt[i]{\left|a_{i}\right|_{\infty}} \rightarrow 0 \\
{\left[k_{\infty}\left(a_{0}, a_{1}, a_{2}, \ldots\right): k_{\infty}\right]<\infty}
\end{array}\right.\right\}
$$

The ring $\bar{k}[t, \sigma]$

The ring $\bar{k}[t, \sigma]$ is the non-commutative polynomial ring in t and σ with coefficients in \bar{k}, subject to

$$
t c=c t, \quad t \sigma=\sigma t, \quad \sigma c=c^{1 / q} \sigma, \quad \forall c \in \bar{k} .
$$

Thus for any $f \in \bar{k}[t]$,

$$
\boldsymbol{\sigma} f=\boldsymbol{f}^{(-1)} \boldsymbol{\sigma}=\sigma(f) \boldsymbol{\sigma} .
$$

Anderson t-motives

Definition

An Anderson t-motive M is a left $\bar{k}[t, \sigma]$-module such that

- M is free and finitely generated over $\bar{k}[t]$;
- M is free and finitely generated over $\bar{k}[\sigma]$;
- $(t-\theta)^{n} \mathrm{M} \subseteq \sigma \mathrm{M}$ for $n \gg 0$.

Anderson t-motives form a category in which morphisms are simply morphisms of left $\bar{k}[t, \sigma]$-modules.

Connections with Drinfeld modules

Theorem (Anderson 1986)

The category of Anderson t-motives contains the categories of Drinfeld modules and (abelian) t-modules over \bar{k} as full subcategories.

Connections with Drinfeld modules

Theorem (Anderson 1986)

The category of Anderson t-motives contains the categories of Drinfeld modules and (abelian) t-modules over \bar{k} as full subcategories.

Suppose M is an Anderson t-Motive that corresponds to a Drinfeld module (or t-module) $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$. How do we recover ρ from M ?

Connections with Drinfeld modules

Theorem (Anderson 1986)

The category of Anderson t-motives contains the categories of Drinfeld modules and (abelian) t-modules over \bar{k} as full subcategories.

Suppose M is an Anderson t-Motive that corresponds to a Drinfeld module (or t-module) $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$. How do we recover ρ from M ?

$$
\rho(\bar{k}) \cong \frac{\mathrm{M}}{(\sigma-1) \mathrm{M}} .
$$

The Carlitz motive

Let $\mathrm{C}=\bar{k}[t]$ and define a left $\bar{k}[\sigma]$-module structure on C by setting

$$
\boldsymbol{\sigma}(f)=(t-\theta) f^{(-1)}, \quad \forall f \in \mathrm{C} .
$$

The Carlitz motive

Let $\mathrm{C}=\bar{k}[t]$ and define a left $\bar{k}[\sigma]$-module structure on C by setting

$$
\boldsymbol{\sigma}(f)=(t-\theta) f^{(-1)}, \quad \forall f \in \mathrm{C} .
$$

For $x \in \bar{k}$, we see that

$$
\begin{aligned}
t x=\theta x+(t-\theta) x & =\theta x+\sigma\left(x^{q}\right) \\
& =\theta x+x^{q}+(\sigma-1)\left(x^{q}\right) \\
& =C(t)(x)+(\sigma-1)\left(x^{q}\right) .
\end{aligned}
$$

So as $\mathbb{F}_{q}[t]$-modules,

$$
\text { Carlitz module } \cong \frac{C}{(\sigma-1) \mathrm{C}} .
$$

Representations of σ

Suppose M is an Anderson t-motive and that $m_{1}, \ldots, m_{r} \in \mathrm{M}$ form a $\bar{k}[t]$-basis of M. Let

$$
\mathbf{m}=\left[\begin{array}{c}
m_{1} \\
\vdots \\
m_{r}
\end{array}\right]
$$

Then we can define $\Phi \in \operatorname{Mat}_{r}(\bar{k}[t])$ by

$$
\boldsymbol{\sigma} \mathbf{m}=\left[\begin{array}{c}
\boldsymbol{\sigma} m_{1} \\
\vdots \\
\boldsymbol{\sigma} m_{r}
\end{array}\right]=\Phi\left[\begin{array}{c}
m_{1} \\
\vdots \\
m_{r}
\end{array}\right] .
$$

We say that Φ represents multiplication by σ on M .

t-Motives for rank 2 Drinfeld modules

Suppose that $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ is a rank 2 Drinfeld module with

$$
\rho(t)=\theta+\kappa F+F^{2}
$$

t-Motives for rank 2 Drinfeld modules

Suppose that $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ is a rank 2 Drinfeld module with

$$
\rho(t)=\theta+\kappa F+F^{2} .
$$

Suppose that $\mathrm{M}=\mathrm{Mat}_{1 \times 2}(\bar{k}[t])$ is the Anderson t-motive with multiplication by σ represented by

$$
\Phi=\left[\begin{array}{cc}
0 & 1 \\
t-\theta & -\kappa^{1 / q}
\end{array}\right] .
$$

t-Motives for rank 2 Drinfeld modules

Suppose that $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ is a rank 2 Drinfeld module with

$$
\rho(t)=\theta+\kappa F+F^{2} .
$$

Suppose that $\mathrm{M}=\mathrm{Mat}_{1 \times 2}(\bar{k}[t])$ is the Anderson t-motive with multiplication by σ represented by

$$
\Phi=\left[\begin{array}{cc}
0 & 1 \\
t-\theta & -\kappa^{1 / q}
\end{array}\right] .
$$

Then

$$
\rho \cong \frac{\mathrm{M}}{(\sigma-1) \mathrm{M}} .
$$

Indeed,

$$
\begin{aligned}
t[x, 0]=[t x, 0]= & {\left[t x+\kappa x^{q},-\kappa^{(-1)} x\right]+\left[-\kappa x^{q}, \kappa^{(-1)} x\right] } \\
= & {\left[t x+\kappa x^{q},-\kappa^{1 / q} x\right]+(\sigma-1)\left[\kappa x^{q}, 0\right] } \\
= & {\left[\theta x+\kappa x^{q}+x^{q^{2}}, 0\right]+\left[(t-\theta) x-x^{q^{2}},-\kappa^{1 / q} x\right] } \\
& \quad+(\sigma-1)\left[\kappa x^{q}, 0\right] \\
= & {\left[\theta x+\kappa x^{q}+x^{q^{2}}, 0\right] } \\
& \quad+(\sigma-1)\left[\kappa x^{q}, 0\right]+\left(\sigma^{2}-1\right)\left[x^{q^{2}}, 0\right] .
\end{aligned}
$$

Rigid analytic triviality

In the examples we have seen, we have the following chain of constructions:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Drinfeld module } \\
\text { or } t \text {-module } \rho
\end{array}\right\} \Longrightarrow\{t \text {-motive M }\} \\
& \Longrightarrow\left\{\begin{array}{l}
\phi \in \operatorname{Mat}_{r}(\bar{k}[t]) \\
\text { representing } \sigma
\end{array}\right\} \\
& \stackrel{(\star)}{\Longrightarrow}\left\{\begin{array}{l}
\Psi \in \operatorname{Mat}_{r}(\mathbb{E}), \\
\psi(-1)=\phi \psi
\end{array}\right\} \\
& \Longrightarrow\left\{\begin{array}{l}
\Psi(\theta)^{-1} \text { provides } \\
\text { periods of } \rho
\end{array}\right\} \text {. }
\end{aligned}
$$

Rigid analytic triviality

In the examples we have seen, we have the following chain of constructions:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Drinfeld module } \\
\text { or } t \text {-module } \rho
\end{array}\right\} \Longrightarrow\{t \text {-motive M }\} \\
& \Longrightarrow\left\{\begin{array}{l}
\phi \in \operatorname{Mat}_{r}(\bar{k}[t]) \\
\text { representing } \sigma
\end{array}\right\} \\
& \stackrel{(\star)}{\Longrightarrow}\left\{\begin{array}{l}
\Psi \in \operatorname{Mat}_{r}(\mathbb{E}), \\
\psi^{(-1)}=\Phi \Psi
\end{array}\right\} \\
& \Longrightarrow\left\{\begin{array}{l}
\Psi(\theta)^{-1} \text { provides } \\
\text { periods of } \rho
\end{array}\right\} .
\end{aligned}
$$

Everything goes through fine, as long as we can do (\star).

Rigid analytic triviality

Definition

An Anderson t-motive M is rigid analytically trivial if for $\Phi \in \operatorname{Mat}_{r}(\bar{k}[t])$ representing multiplication by σ on M , there exists a (fundamental matrix)

$$
\psi \in \operatorname{Mat}_{r}(\mathbb{E}) \cap \mathrm{GL}_{r}(\mathbb{T})
$$

so that

$$
\Psi^{(-1)}=\Phi \psi .
$$

Rigid analytic triviality

Definition

An Anderson t-motive M is rigid analytically trivial if for $\Phi \in \mathrm{Mat}_{r}(\bar{k}[t])$ representing multiplication by σ on M , there exists a (fundamental matrix)

$$
\psi \in \operatorname{Mat}_{r}(\mathbb{E}) \cap \mathrm{GL}_{r}(\mathbb{T})
$$

so that

$$
\psi^{(-1)}=\phi \psi .
$$

A deep theorem of Anderson proves the following equivalence,

$$
\left\{\begin{array}{l}
\text { Drinfeld module or } t- \\
\text { module is uniformizable }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
t \text {-motive } \mathrm{M} \text { is rigid } \\
\text { analytically trivial }
\end{array}\right\} .
$$

Difference Galois groups

- Definitions and constructions
- Properties
- Connections with t-motives/Drinfeld modules

Preliminaries

We will work in some generality. We fix fields $K \subseteq L$ with an automorphism $\sigma: L \stackrel{\sim}{\rightarrow} L$ such that

- $\sigma(K) \subseteq K$;
- L / K is separable;
- $L^{\sigma}=K^{\sigma}=: E$.

The example to keep in mind of course is $(E, K, L)=\left(\mathbb{F}_{q}(t), \bar{k}(t), \mathbb{L}\right)$.

Σ and Λ

We suppose that we have matrices $\Phi \in \mathrm{GL}_{r}(K)$ and $\Psi \in \mathrm{GL}_{r}(L)$ so that

$$
\sigma(\Psi)=\Phi \Psi
$$

Σ and Λ

We suppose that we have matrices $\Phi \in \mathrm{GL}_{r}(K)$ and $\Psi \in \mathrm{GL}_{r}(L)$ so that

$$
\sigma(\Psi)=\Phi \Psi
$$

Let $X=\left(X_{i j}\right)$ denote an $r \times r$ matrix of variables. Define a K-algebra homomorphism,

$$
\nu=\left(X_{i j} \mapsto \Psi_{i j}\right): K[X, 1 / \operatorname{det} X] \rightarrow L
$$

Σ and Λ

We suppose that we have matrices $\Phi \in \mathrm{GL}_{r}(K)$ and $\Psi \in \mathrm{GL}_{r}(L)$ so that

$$
\sigma(\Psi)=\Phi \Psi
$$

Let $X=\left(X_{i j}\right)$ denote an $r \times r$ matrix of variables. Define a K-algebra homomorphism,

$$
\nu=\left(X_{i j} \mapsto \Psi_{i j}\right): K[X, 1 / \operatorname{det} X] \rightarrow L
$$

Let $\Sigma=\operatorname{im} \nu$ and take Λ for its fraction field in L :

$$
\Sigma=K[\Psi, 1 / \operatorname{det} \Psi], \quad \Lambda=K(\Psi)
$$

Additional hypothesis: K is algebraically closed in Λ.

Σ and Λ

We suppose that we have matrices $\Phi \in \mathrm{GL}_{r}(K)$ and $\Psi \in \mathrm{GL}_{r}(L)$ so that

$$
\sigma(\Psi)=\Phi \Psi
$$

Let $X=\left(X_{i j}\right)$ denote an $r \times r$ matrix of variables. Define a K-algebra homomorphism,

$$
\nu=\left(X_{i j} \mapsto \Psi_{i j}\right): K[X, 1 / \operatorname{det} X] \rightarrow L
$$

Let $\Sigma=\operatorname{im} \nu$ and take Λ for its fraction field in L :

$$
\Sigma=K[\Psi, 1 / \operatorname{det} \Psi], \quad \Lambda=K(\Psi)
$$

Additional hypothesis: K is algebraically closed in Λ. Generally holds in the case $\left(\mathbb{F}_{q}(t), \bar{k}(t), \mathbb{L}\right)$.

The Galois group 「

Let $Z \subseteq \mathrm{GL}_{r / K}$ be the smallest K-subscheme such that $\psi \in Z(L)$. Thus,

$$
Z \cong \operatorname{Spec} \Sigma \quad \text { (as } K \text {-schemes) }
$$

The Galois group 「

Let $Z \subseteq \mathrm{GL}_{r / K}$ be the smallest K-subscheme such that $\psi \in Z(L)$. Thus,

$$
Z \cong \operatorname{Spec} \Sigma \quad \text { (as } K \text {-schemes) }
$$

Now set $\Psi_{1}, \Psi_{2} \in \mathrm{GL}_{r}\left(L \otimes_{K} L\right)$ so that

$$
\left(\Psi_{1}\right)_{i j}=\Psi_{i j} \otimes 1, \quad\left(\Psi_{2}\right)_{i j}=1 \otimes \Psi_{i j}
$$

and set $\widetilde{\Psi}=\Psi_{1}^{-1} \Psi_{2} \in \mathrm{GL}_{r}\left(L \otimes_{K} L\right)$.

The Galois group 「

Let $Z \subseteq \mathrm{GL}_{r / K}$ be the smallest K-subscheme such that $\psi \in Z(L)$. Thus,

$$
Z \cong \operatorname{Spec} \Sigma \quad \text { (as } K \text {-schemes) }
$$

Now set $\Psi_{1}, \Psi_{2} \in \mathrm{GL}_{r}\left(L \otimes_{K} L\right)$ so that

$$
\left(\Psi_{1}\right)_{i j}=\Psi_{i j} \otimes 1, \quad\left(\Psi_{2}\right)_{i j}=1 \otimes \Psi_{i j}
$$

and set $\widetilde{\Psi}=\Psi_{1}^{-1} \Psi_{2} \in \mathrm{GL}_{r}\left(L \otimes_{K} L\right)$.
Define an E-algebra map,

$$
\mu=\left(X_{i j} \mapsto \widetilde{\Psi}_{i j}\right): E[X, 1 / \operatorname{det} X] \rightarrow L \otimes_{K} L
$$

which defines a closed E-subscheme Γ of $\mathrm{GL}_{r / E}$.

Working hypotheses for Γ and Z

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\bar{L})$ should be a left coset for Γ.

Working hypotheses for Γ and Z

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\bar{L})$ should be a left coset for Γ.
- Since $\psi \in Z(\bar{L})$, we should have

$$
\Gamma(\bar{L})=\psi^{-1} Z(\bar{L})
$$

Working hypotheses for Γ and Z

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\bar{L})$ should be a left coset for Γ.
- Since $\psi \in Z(\bar{L})$, we should have

$$
\Gamma(\bar{L})=\psi^{-1} Z(\bar{L})
$$

- This isomorphism should induce an isomorphism of K-schemes,

$$
(\alpha, \beta) \mapsto(\alpha, \alpha \beta): Z \times \Gamma \xrightarrow{\sim} \boldsymbol{Z} \times \boldsymbol{Z}
$$

Working hypotheses for Γ and Z

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\bar{L})$ should be a left coset for Γ.
- Since $\Psi \in Z(\bar{L})$, we should have

$$
\Gamma(\bar{L})=\psi^{-1} Z(\bar{L}) .
$$

- This isomorphism should induce an isomorphism of K-schemes,

$$
(\alpha, \beta) \mapsto(\alpha, \alpha \beta): \boldsymbol{Z} \times \Gamma \stackrel{\sim}{\rightarrow} \boldsymbol{Z} \times \boldsymbol{Z} .
$$

- Everything should be done in such a way as to be defined over the smallest field possible (say E, K, or L).

The difference Galois group 「

Theorem (P. 2008)

- Γ is a closed E-subgroup scheme of $\mathrm{GL}_{r / E}$.
- Z is stable under right-multiplication by Γ_{K} and is a Γ_{K}-torsor.
- The K-scheme Z is absolutely irreducible and is smooth over \bar{K}.
- The E-scheme Γ is absolutely irreducible and is smooth over \bar{E}.
- The dimension of Γ over E is equal to the transcendence degree of \wedge over K.
- $\Gamma(E) \cong \operatorname{Aut}_{\sigma}(\Lambda / K)$.
- If every element of \bar{E} is fixed by some power of σ, then the elements of \wedge fixed by $\Gamma(\bar{E})$ are precisely K.

Connections with t-motives

Given a rigid analytically trivial Anderson t-motive M , we form

$$
M:=\bar{k}(t) \otimes_{\bar{k}[t]} \mathrm{M}
$$

Then M carries the structure of a left $\bar{k}(t)\left[\sigma, \sigma^{-1}\right]$-module with

- M is a f.d. $\bar{k}(t)$-vector space;
- multiplication by σ on M is represented by a matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$ that has a fundamental matrix $\psi \in \mathrm{GL}_{r}(\mathbb{L})$.

Connections with t-motives

Given a rigid analytically trivial Anderson t-motive M , we form

$$
M:=\bar{k}(t) \otimes_{\bar{k}[t]} \mathrm{M} .
$$

Then M carries the structure of a left $\bar{k}(t)\left[\sigma, \sigma^{-1}\right]$-module with

- M is a f.d. $\bar{k}(t)$-vector space;
- multiplication by σ on M is represented by a matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$ that has a fundamental matrix $\Psi \in \mathrm{GL}_{r}(\mathbb{L})$.

Proposition (P. 2008)

The objects just described form a neutral Tannakian category over $\mathbb{F}_{q}(t)$ with fiber functor

$$
\omega(M)=\left(\mathbb{L} \otimes_{\bar{k}(t)} M\right)^{\sigma}
$$

Category of t-motives

- "neutral Tannakian category over $\mathbb{F}_{q}(t) " \Longleftrightarrow$ category of representations of an affine group scheme over $\mathbb{F}_{q}(t)$.
- We define the category of t-motives to be the Tannakian subcategory generated by all Anderson t-motives.

Category of t-motives

- "neutral Tannakian category over $\mathbb{F}_{q}(t) " \Longleftrightarrow$ category of representations of an affine group scheme over $\mathbb{F}_{q}(t)$.
- We define the category of t-motives to be the Tannakian subcategory generated by all Anderson t-motives.

Theorem (P. 2008)

Let M be a t-motive. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$ represents multiplication by σ on M and that $\psi \in \mathrm{GL}_{r}(\mathbb{L})$ is a rigid analytic trivialization for Φ. Then the Galois group Γ_{ψ} associated to the difference equations

$$
\psi^{(-1)}=\Phi \Psi
$$

is naturally isomorphic to the group Γ_{M} associated to M via Tannakian duality.

Algebraic independence

- Main theorem
- Sketch of the proof

Galois groups and transcendence

Theorem (P. 2008)

Let M be a t-motive, and let Γ_{M} be its associated group via Tannakian duality. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t)) \cap$ Mat $_{r}(\bar{k}[t])$ represents multiplication by σ on M and that $\operatorname{det} \Phi=c(t-\theta)^{s}, c \in \bar{k}^{\times}$.

Galois groups and transcendence

Theorem (P. 2008)

Let M be a t-motive, and let Γ_{M} be its associated group via Tannakian duality. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t)) \cap$ Mat $_{r}(\bar{k}[t])$ represents multiplication by σ on M and that $\operatorname{det} \Phi=c(t-\theta)^{s}, c \in \bar{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\mathrm{GL}_{r}(\mathbb{T}) \cap \operatorname{Mat}_{r}(\mathbb{E})$.

Galois groups and transcendence

Theorem (P. 2008)

Let M be a t-motive, and let Γ_{M} be its associated group via Tannakian duality. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t)) \cap$ Mat $_{r}(\bar{k}[t])$ represents multiplication by σ on M and that $\operatorname{det} \Phi=c(t-\theta)^{s}, c \in \bar{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\mathrm{GL}_{r}(\mathbb{T}) \cap \operatorname{Mat}_{r}(\mathbb{E})$. Finally let

$$
L=\bar{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}} .
$$

Galois groups and transcendence

Theorem (P. 2008)

Let M be a t-motive, and let Γ_{M} be its associated group via Tannakian duality. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t)) \cap$ Mat $_{r}(\bar{k}[t])$ represents multiplication by σ on M and that $\operatorname{det} \Phi=c(t-\theta)^{s}, c \in \bar{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\mathrm{GL}_{r}(\mathbb{T}) \cap \operatorname{Mat}_{r}(\mathbb{E})$. Finally let

$$
L=\bar{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}}
$$

Then

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} L=\operatorname{dim} \Gamma_{M}
$$

Remarks: If M arises from an actual Anderson t-motive, then the hypotheses of the theorem are automatically satisfied.

Galois groups and transcendence

Theorem (P. 2008)

Let M be a t-motive, and let Γ_{M} be its associated group via Tannakian duality. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t)) \cap$ Mat $_{r}(\bar{k}[t])$ represents multiplication by σ on M and that $\operatorname{det} \Phi=c(t-\theta)^{s}, c \in \bar{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\mathrm{GL}_{r}(\mathbb{T}) \cap \operatorname{Mat}_{r}(\mathbb{E})$. Finally let

$$
L=\bar{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}}
$$

Then

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} L=\operatorname{dim} \Gamma_{M}
$$

Remarks: If M arises from an actual Anderson t-motive, then the hypotheses of the theorem are automatically satisfied.

In practice to calculate $\operatorname{dim} \Gamma_{M}$, we calculate Γ_{ψ}.

Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

- Fix $d \geq 1$. For each $n \geq 1$, the entries of the Kronecker product,

$$
\psi^{\otimes n}
$$

are all degree n monomials in the entries of ψ.

Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

- Fix $d \geq 1$. For each $n \geq 1$, the entries of the Kronecker product,

$$
\Psi^{\otimes n}
$$

are all degree n monomials in the entries of ψ.

- Let $\bar{\psi}$ be the column vector whose entries are the concatenation of 1 and each of the columns of $\Psi^{\otimes n}$ for $n \leq d$. Let

$$
\bar{\Phi}=[1] \oplus \Phi^{\oplus r} \oplus\left(\Phi^{\otimes 2}\right)^{\oplus r^{2}} \oplus \cdots \oplus\left(\Phi^{\otimes d}\right)^{\oplus r^{d}}
$$

Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

- Fix $d \geq 1$. For each $n \geq 1$, the entries of the Kronecker product,

$$
\Psi^{\otimes n}
$$

are all degree n monomials in the entries of ψ.

- Let $\bar{\psi}$ be the column vector whose entries are the concatenation of 1 and each of the columns of $\psi^{\otimes n}$ for $n \leq d$. Let

$$
\bar{\Phi}=[1] \oplus \Phi^{\oplus r} \oplus\left(\Phi^{\otimes 2}\right)^{\oplus r^{2}} \oplus \cdots \oplus\left(\Phi^{\otimes d}\right)^{\oplus r^{d}}
$$

- Then

$$
\bar{\psi}^{(-1)}=\bar{\Phi} \bar{\psi}
$$

- Any polynomial relations over \bar{k} among the entries of $\Psi(\theta)$ will eventually appear as a \bar{k}-linear relation among the entries of $\bar{\psi}(\theta)$, once d is large enough.
- Any polynomial relations over \bar{k} among the entries of $\Psi(\theta)$ will eventually appear as a \bar{k}-linear relation among the entries of $\bar{\psi}(\theta)$, once d is large enough.
- Use the ABP-criterion to show that

$$
\operatorname{dim}_{\bar{k}} Q_{d}=\operatorname{dim}_{\bar{k}(t)} S_{d}
$$

where

- Q_{d} is the \bar{k}-span of the entries of $\bar{\psi}(\theta)$;
- S_{d} is the $\bar{k}(t)$-span of the entries of ψ.
- Any polynomial relations over \bar{k} among the entries of $\Psi(\theta)$ will eventually appear as a \bar{k}-linear relation among the entries of $\bar{\psi}(\theta)$, once d is large enough.
- Use the ABP-criterion to show that

$$
\operatorname{dim}_{\bar{k}} Q_{d}=\operatorname{dim}_{\bar{k}(t)} S_{d}
$$

where

- Q_{d} is the \bar{k}-span of the entries of $\bar{\psi}(\theta)$;
- S_{d} is the $\bar{k}(t)$-span of the entries of ψ.
- Once we show this for each d, the equality of transcendence degrees follows (by a comparison of Hilbert series).

Wade's theorem redux

π_{q} is transcendental

- Work in the setting of the Carlitz motive C with $r=1 ; \Phi=t-\theta$; $\psi=\Omega(t)$:

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t) .
$$

Wade's theorem redux

π_{q} is transcendental

- Work in the setting of the Carlitz motive C with $r=1 ; \Phi=t-\theta$; $\psi=\Omega(t):$

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t)
$$

- tr. $\operatorname{deg}_{\bar{k}(t)} \bar{k}(t)(\Omega)=1$

Wade's theorem redux

π_{q} is transcendental

- Work in the setting of the Carlitz motive C with $r=1 ; \Phi=t-\theta$; $\psi=\Omega(t)$:

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t) .
$$

- tr. $\operatorname{deg}_{\bar{k}(t)} \bar{k}(t)(\Omega)=1$
- The Galois group Γ in this case is $\mathbb{G}_{m}=\mathrm{GL}_{1 / \mathbb{F}_{q}(t)}$:

$$
\mathbb{G}_{m}\left(\mathbb{F}_{q}(t)\right)=\mathbb{F}_{q}(t)^{\times} \cong \operatorname{Aut}_{\sigma}(\bar{k}(t)(\Omega) / \bar{k}(t))
$$

via

$$
\gamma \in \mathbb{F}_{q}(t)^{\times}, h(t, \Omega) \in \bar{k}(t)(\Omega) \quad \Rightarrow \quad \gamma * h(t, \Omega)=h(t, \Omega \gamma)
$$

Wade's theorem redux

π_{q} is transcendental

- Work in the setting of the Carlitz motive C with $r=1 ; \Phi=t-\theta$; $\psi=\Omega(t):$

$$
\Omega^{(-1)}(t)=(t-\theta) \Omega(t) .
$$

- tr. $\operatorname{deg}_{\bar{k}(t)} \bar{k}(t)(\Omega)=1$
- The Galois group Γ in this case is $\mathbb{G}_{m}=\mathrm{GL}_{1 / \mathbb{F}_{q}(t)}$:

$$
\mathbb{G}_{m}\left(\mathbb{F}_{q}(t)\right)=\mathbb{F}_{q}(t)^{\times} \cong \operatorname{Aut}_{\sigma}(\bar{k}(t)(\Omega) / \bar{k}(t))
$$

via

$$
\gamma \in \mathbb{F}_{q}(t)^{\times}, h(t, \Omega) \in \bar{k}(t)(\Omega) \quad \Rightarrow \quad \gamma * h(t, \Omega)=h(t, \Omega \gamma) .
$$

- Previous theorem \Rightarrow

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} \bar{k}(\Psi(\theta))=\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} \bar{k}\left(\pi_{q}\right)=\operatorname{dim} \Gamma=1
$$

