Transcendence in Positive Characteristic *t*-Motives and Difference Galois Groups

W. Dale Brownawell Matthew Papanikolas

Penn State University Texas A&M University

Arizona Winter School 2008 March 17, 2008

(4) The (b)

Outline

2 Difference Galois groups

3 Algebraic independence

э

4 A 1

t-Motives

- Definitions
- Connections with Drinfeld modules and t-modules
- Rigid analytic triviality

< (17) × < э.

Scalar quantities

Let p be a fixed prime; q a fixed power of p.

$A \mathrel{\mathop:}= \mathbb{F}_{\boldsymbol{q}}[heta]$	\longleftrightarrow	\mathbb{Z}
$k \mathrel{\mathop:}= \mathbb{F}_q(\theta)$	\longleftrightarrow	\mathbb{Q}
\overline{k}	\longleftrightarrow	$\overline{\mathbb{Q}}$
$k_\infty := \mathbb{F}_q((1/ heta))$	\longleftrightarrow	\mathbb{R}
$\mathbb{C}_\infty := \widehat{\overline{k_\infty}}$	\longleftrightarrow	\mathbb{C}
$ f _{\infty}=q^{\deg f}$	\longleftrightarrow	.

э

DQC

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Functions

Rational functions:

 $\mathbb{F}_q(t), \quad \overline{k}(t), \quad \mathbb{C}_{\infty}(t).$

• Analytic functions:

$$\mathbb{T} := \bigg\{ \sum_{i \ge 0} a_i t^i \in \mathbb{C}_{\infty}[[t]] \ \Big| \ |a_i|_{\infty} \to 0 \bigg\}.$$

and

 $\mathbb{L}:=\text{fraction field of }\mathbb{T}.$

• Entire functions:

$$\mathbb{E} := \bigg\{ \sum_{i \ge 0} a_i t^i \in \mathbb{C}_{\infty}[[t]] \bigg| \frac{\sqrt[i]{|a_i|_{\infty}} \to 0,}{[k_{\infty}(a_0, a_1, a_2, \dots) : k_{\infty}] < \infty} \bigg\}.$$

э

The ring $\overline{k}[t, \sigma]$

The ring $\overline{k}[t, \sigma]$ is the non-commutative polynomial ring in *t* and σ with coefficients in \overline{k} , subject to

$$tc = ct, \quad t\sigma = \sigma t, \quad \sigma c = c^{1/q}\sigma, \quad \forall \ c \in \overline{k}.$$

Thus for any $f \in \overline{k}[t]$,

$$\boldsymbol{\sigma} f = f^{(-1)} \boldsymbol{\sigma} = \sigma(f) \boldsymbol{\sigma}.$$

Anderson *t*-motives

Definition

An Anderson t-motive M is a left $\overline{k}[t, \sigma]$ -module such that

- M is free and finitely generated over $\overline{k}[t]$;
- M is free and finitely generated over $\overline{k}[\sigma]$;
- $(t \theta)^n \mathbf{M} \subseteq \boldsymbol{\sigma} \mathbf{M}$ for $n \gg 0$.

Anderson *t*-motives form a category in which morphisms are simply morphisms of left $\overline{k}[t, \sigma]$ -modules.

Connections with Drinfeld modules

Theorem (Anderson 1986)

The category of Anderson t-motives contains the categories of Drinfeld modules and (abelian) t-modules over \overline{k} as full subcategories.

Connections with Drinfeld modules

Theorem (Anderson 1986)

The category of Anderson t-motives contains the categories of Drinfeld modules and (abelian) t-modules over \overline{k} as full subcategories.

Suppose M is an Anderson *t*-Motive that corresponds to a Drinfeld module (or *t*-module) $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$. How do we recover ρ from M?

Connections with Drinfeld modules

Theorem (Anderson 1986)

The category of Anderson t-motives contains the categories of Drinfeld modules and (abelian) t-modules over \overline{k} as full subcategories.

Suppose M is an Anderson *t*-Motive that corresponds to a Drinfeld module (or *t*-module) $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$. How do we recover ρ from M?

$$\rho(\overline{k}) \cong \frac{\mathsf{M}}{(\sigma-1)\mathsf{M}}$$

The Carlitz motive

Let $C = \overline{k}[t]$ and define a left $\overline{k}[\sigma]$ -module structure on C by setting

$$\sigma(f) = (t - \theta)f^{(-1)}, \quad \forall f \in \mathsf{C}.$$

Image: A (1)

The Carlitz motive

Let $C = \overline{k}[t]$ and define a left $\overline{k}[\sigma]$ -module structure on C by setting

$$\sigma(f) = (t - \theta) f^{(-1)}, \quad \forall f \in \mathsf{C}.$$

For $x \in \overline{k}$, we see that

$$tx = \theta x + (t - \theta)x = \theta x + \sigma(x^q)$$

= $\theta x + x^q + (\sigma - 1)(x^q)$
= $C(t)(x) + (\sigma - 1)(x^q)$.

So as $\mathbb{F}_q[t]$ -modules,

Carlitz module
$$\cong \frac{C}{(\sigma - 1)C}$$
.

Representations of σ

Suppose M is an Anderson *t*-motive and that $m_1, \ldots, m_r \in M$ form a $\overline{k}[t]$ -basis of M. Let

$$\mathbf{m} = \begin{bmatrix} m_1 \\ \vdots \\ m_r \end{bmatrix}.$$

Then we can define $\Phi \in \operatorname{Mat}_r(\overline{k}[t])$ by

$$\boldsymbol{\sigma}\mathbf{m} = \begin{bmatrix} \boldsymbol{\sigma} m_1 \\ \vdots \\ \boldsymbol{\sigma} m_r \end{bmatrix} = \Phi \begin{bmatrix} m_1 \\ \vdots \\ m_r \end{bmatrix}.$$

We say that Φ *represents multiplication by* σ on M.

t-Motives for rank 2 Drinfeld modules

Suppose that $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$ is a rank 2 Drinfeld module with

$$\rho(t) = \theta + \kappa F + F^2.$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

t-Motives for rank 2 Drinfeld modules

Suppose that $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$ is a rank 2 Drinfeld module with

$$\rho(t) = \theta + \kappa F + F^2.$$

Suppose that $M = Mat_{1\times 2}(\overline{k}[t])$ is the Anderson *t*-motive with multiplication by σ represented by

$$\Phi = \begin{bmatrix} 0 & 1 \\ t - \theta & -\kappa^{1/q} \end{bmatrix}.$$

t-Motives for rank 2 Drinfeld modules

Suppose that $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$ is a rank 2 Drinfeld module with

$$\rho(t) = \theta + \kappa F + F^2.$$

Suppose that $M = Mat_{1\times 2}(\overline{k}[t])$ is the Anderson *t*-motive with multiplication by σ represented by

$$\Phi = \begin{bmatrix} 0 & 1 \\ t - \theta & -\kappa^{1/q} \end{bmatrix}.$$

Then

$$\rho \cong \frac{\mathsf{M}}{(\boldsymbol{\sigma}-1)\mathsf{M}}.$$

Indeed,

$$t[x,0] = [tx,0] = [tx + \kappa x^{q}, -\kappa^{(-1)}x] + [-\kappa x^{q}, \kappa^{(-1)}x]$$

= $[tx + \kappa x^{q}, -\kappa^{1/q}x] + (\sigma - 1)[\kappa x^{q}, 0]$
= $[\theta x + \kappa x^{q} + x^{q^{2}}, 0] + [(t - \theta)x - x^{q^{2}}, -\kappa^{1/q}x]$
+ $(\sigma - 1)[\kappa x^{q}, 0]$
= $[\theta x + \kappa x^{q} + x^{q^{2}}, 0]$
+ $(\sigma - 1)[\kappa x^{q}, 0] + (\sigma^{2} - 1)[x^{q^{2}}, 0].$

2

990

イロト イロト イヨト イヨト

In the examples we have seen, we have the following chain of constructions:

$$\begin{cases} \text{Drinfeld module} \\ \text{or } t\text{-motive } M \end{cases} \implies \left\{ t\text{-motive } M \right\} \\ \implies \left\{ \substack{\Phi \in \text{Mat}_r(\overline{k}[t]) \\ \text{representing } \sigma } \right\} \\ \stackrel{(\star)}{\Longrightarrow} \left\{ \substack{\Psi \in \text{Mat}_r(\mathbb{E}), \\ \Psi^{(-1)} = \Phi \Psi } \right\} \\ \implies \left\{ \substack{\Psi(\theta)^{-1} \text{ provides} \\ \text{periods of } \rho } \right\} \end{cases}$$

.

< 同 > < ∃ >

In the examples we have seen, we have the following chain of constructions:

$$\begin{cases} \text{Drinfeld module} \\ \text{or } t\text{-module } \rho \end{cases} \Longrightarrow \left\{ t\text{-motive } \mathsf{M} \right\} \\ \implies \left\{ \begin{array}{l} \Phi \in \mathsf{Mat}_r(\overline{k}[t]) \\ \text{representing } \sigma \end{array} \right\} \\ \stackrel{(\star)}{\Longrightarrow} \left\{ \begin{array}{l} \Psi \in \mathsf{Mat}_r(\mathbb{E}), \\ \Psi^{(-1)} = \Phi \Psi \end{array} \right\} \\ \implies \left\{ \begin{array}{l} \Psi(\theta)^{-1} \text{ provides} \\ \text{periods of } \rho \end{array} \right\} \end{cases}$$

Everything goes through fine, as long as we can do (\star) .

Definition

An Anderson *t*-motive M is *rigid analytically trivial* if for $\Phi \in Mat_r(\overline{k}[t])$ representing multiplication by σ on M, there exists a (fundamental matrix)

$$\Psi\in \mathsf{Mat}_r(\mathbb{E})\cap\mathsf{GL}_r(\mathbb{T})$$

so that

$$\Psi^{(-1)} = \Phi \Psi.$$

モトィモト

4 A 1

Definition

An Anderson *t*-motive M is *rigid analytically trivial* if for $\Phi \in Mat_r(\overline{k}[t])$ representing multiplication by σ on M, there exists a (fundamental matrix)

 $\Psi \in \operatorname{Mat}_r(\mathbb{E}) \cap \operatorname{GL}_r(\mathbb{T})$

so that

$$\Psi^{(-1)} = \Phi \Psi.$$

A deep theorem of Anderson proves the following equivalence,

 $\left\{ \begin{array}{l} \text{Drinfeld module or } t\text{-} \\ \text{module is uniformizable} \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{l} t\text{-motive M is rigid} \\ \text{analytically trivial} \end{array} \right\}.$

< ロト < 同ト < ヨト < ヨト -

Difference Galois groups

- Definitions and constructions
- Properties
- Connections with *t*-motives/Drinfeld modules

Preliminaries

We will work in some generality. We fix fields $K \subseteq L$ with an automorphism $\sigma : L \xrightarrow{\sim} L$ such that

- $\sigma(K) \subseteq K;$
- L/K is separable;
- $L^{\sigma} = K^{\sigma} =: E.$

The example to keep in mind of course is $(E, K, L) = (\mathbb{F}_q(t), \overline{k}(t), \mathbb{L}).$

We suppose that we have matrices $\Phi \in GL_r(K)$ and $\Psi \in GL_r(L)$ so that

$$\sigma(\Psi) = \Phi \Psi.$$

3

DQC

< ロト < 同ト < ヨト < ヨト

We suppose that we have matrices $\Phi \in GL_r(K)$ and $\Psi \in GL_r(L)$ so that

$$\sigma(\Psi) = \Phi \Psi.$$

Let $X = (X_{ij})$ denote an $r \times r$ matrix of variables. Define a *K*-algebra homomorphism,

$$\nu = (X_{ij} \mapsto \Psi_{ij}) : K[X, 1/\det X] \to L.$$

We suppose that we have matrices $\Phi \in GL_r(K)$ and $\Psi \in GL_r(L)$ so that

$$\sigma(\Psi) = \Phi \Psi.$$

Let $X = (X_{ij})$ denote an $r \times r$ matrix of variables. Define a *K*-algebra homomorphism,

$$\nu = (X_{ij} \mapsto \Psi_{ij}) : K[X, 1/\det X] \to L.$$

Let $\Sigma = \operatorname{im} \nu$ and take Λ for its fraction field in *L*:

$$\Sigma = K[\Psi, 1/\det \Psi], \quad \Lambda = K(\Psi).$$

Additional hypothesis: K is algebraically closed in Λ .

We suppose that we have matrices $\Phi \in GL_r(K)$ and $\Psi \in GL_r(L)$ so that

$$\sigma(\Psi) = \Phi \Psi.$$

Let $X = (X_{ij})$ denote an $r \times r$ matrix of variables. Define a *K*-algebra homomorphism,

$$\nu = (X_{ij} \mapsto \Psi_{ij}) : K[X, 1/\det X] \to L.$$

Let $\Sigma = \operatorname{im} \nu$ and take Λ for its fraction field in *L*:

$$\Sigma = K[\Psi, 1/\det \Psi], \quad \Lambda = K(\Psi).$$

Additional hypothesis: *K* is algebraically closed in Λ . Generally holds in the case ($\mathbb{F}_q(t), \overline{k}(t), \mathbb{L}$).

The Galois group $\ensuremath{\Gamma}$

Let $Z \subseteq GL_{r/K}$ be the smallest *K*-subscheme such that $\Psi \in Z(L)$. Thus,

 $Z \cong \operatorname{Spec} \Sigma$ (as *K*-schemes).

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Galois group **F**

Let $Z \subseteq GL_{r/K}$ be the smallest *K*-subscheme such that $\Psi \in Z(L)$. Thus,

 $Z \cong \operatorname{Spec} \Sigma$ (as *K*-schemes).

Now set Ψ_1 , $\Psi_2 \in GL_r(L \otimes_K L)$ so that

 $(\Psi_1)_{ij} = \Psi_{ij} \otimes 1, \quad (\Psi_2)_{ij} = 1 \otimes \Psi_{ij},$

and set $\widetilde{\Psi} = \Psi_1^{-1} \Psi_2 \in \operatorname{GL}_r(L \otimes_K L)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 りへで

The Galois group **F**

Let $Z \subseteq GL_{r/K}$ be the smallest *K*-subscheme such that $\Psi \in Z(L)$. Thus,

 $Z \cong \operatorname{Spec} \Sigma$ (as *K*-schemes).

Now set Ψ_1 , $\Psi_2 \in \operatorname{GL}_r(L \otimes_{\mathcal{K}} L)$ so that

$$(\Psi_1)_{ij}=\Psi_{ij}\otimes 1, \quad (\Psi_2)_{ij}=1\otimes \Psi_{ij},$$

and set $\widetilde{\Psi} = \Psi_1^{-1} \Psi_2 \in \operatorname{GL}_r(L \otimes_{\mathcal{K}} L)$. Define an *E*-algebra map,

$$\mu = (X_{ij} \mapsto \widetilde{\Psi}_{ij}) : E[X, 1/\det X] \to L \otimes_{\mathcal{K}} L,$$

which defines a closed *E*-subscheme Γ of $GL_{r/E}$.

ヨト イヨト ニヨ

Analogies with Galois groups of differential equations lead to the following working hypotheses:

• $Z(\overline{L})$ should be a left coset for Γ .

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\overline{L})$ should be a left coset for Γ .
- Since $\Psi \in Z(\overline{L})$, we should have

$$\Gamma(\overline{L}) = \Psi^{-1}Z(\overline{L}).$$

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\overline{L})$ should be a left coset for Γ .
- Since $\Psi \in Z(\overline{L})$, we should have

$$\Gamma(\overline{L}) = \Psi^{-1}Z(\overline{L}).$$

• This isomorphism should induce an isomorphism of K-schemes,

$$(\alpha,\beta)\mapsto (\alpha,\alpha\beta): \mathbb{Z}\times\Gamma\xrightarrow{\sim}\mathbb{Z}\times\mathbb{Z}.$$

Analogies with Galois groups of differential equations lead to the following working hypotheses:

- $Z(\overline{L})$ should be a left coset for Γ .
- Since $\Psi \in Z(\overline{L})$, we should have

$$\Gamma(\overline{L}) = \Psi^{-1}Z(\overline{L}).$$

• This isomorphism should induce an isomorphism of K-schemes,

$$(\alpha,\beta)\mapsto (\alpha,\alpha\beta): \mathbb{Z}\times\Gamma\xrightarrow{\sim}\mathbb{Z}\times\mathbb{Z}.$$

• Everything should be done in such a way as to be defined over the smallest field possible (say *E*, *K*, or *L*).

The difference Galois group **F**

Theorem (P. 2008)

- Γ is a closed E-subgroup scheme of GL_{r/E}.
- Z is stable under right-multiplication by Γ_K and is a Γ_K -torsor.
- The K-scheme Z is absolutely irreducible and is smooth over \overline{K} .
- The E-scheme Γ is absolutely irreducible and is smooth over \overline{E} .
- The dimension of Γ over E is equal to the transcendence degree of ∧ over K.
- $\Gamma(E) \cong \operatorname{Aut}_{\sigma}(\Lambda/K)$.
- If every element of *E* is fixed by some power of *σ*, then the elements of Λ fixed by Γ(*E*) are precisely *K*.

Connections with *t*-motives

Given a rigid analytically trivial Anderson *t*-motive M, we form

$$M := \overline{k}(t) \otimes_{\overline{k}[t]} \mathsf{M}.$$

Then *M* carries the structure of a left $\overline{k}(t)[\sigma, \sigma^{-1}]$ -module with

- *M* is a f.d. $\overline{k}(t)$ -vector space;
- multiplication by σ on M is represented by a matrix $\Phi \in GL_r(\overline{k}(t))$ that has a fundamental matrix $\Psi \in GL_r(\mathbb{L})$.

Connections with *t*-motives

Given a rigid analytically trivial Anderson *t*-motive M, we form

 $M:=\overline{k}(t)\otimes_{\overline{k}[t]}\mathsf{M}.$

Then *M* carries the structure of a left $\overline{k}(t)[\sigma, \sigma^{-1}]$ -module with

- *M* is a f.d. $\overline{k}(t)$ -vector space;
- multiplication by σ on M is represented by a matrix $\Phi \in GL_r(\overline{k}(t))$ that has a fundamental matrix $\Psi \in GL_r(\mathbb{L})$.

Proposition (P. 2008)

The objects just described form a neutral Tannakian category over $\mathbb{F}_q(t)$ with fiber functor

$$\omega(M) = (\mathbb{L} \otimes_{\overline{k}(t)} M)^{\sigma}.$$

Category of *t*-motives

- "neutral Tannakian category over 𝔽_q(t)" ⇐⇒ category of representations of an affine group scheme over 𝔽_q(t).
- We define the *category of t-motives* to be the Tannakian subcategory generated by all Anderson *t*-motives.

Category of *t*-motives

- "neutral Tannakian category over 𝔽_q(t)" ⇐⇒ category of representations of an affine group scheme over 𝔽_q(t).
- We define the *category of t-motives* to be the Tannakian subcategory generated by all Anderson *t*-motives.

Theorem (P. 2008)

Let *M* be a *t*-motive. Suppose that $\Phi \in GL_r(\overline{k}(t))$ represents multiplication by σ on *M* and that $\Psi \in GL_r(\mathbb{L})$ is a rigid analytic trivialization for Φ . Then the Galois group Γ_{Ψ} associated to the difference equations

$$\Psi^{(-1)} = \Phi \Psi$$

is naturally isomorphic to the group Γ_M associated to M via Tannakian duality.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algebraic independence

- Main theorem
- Sketch of the proof

DQC

4 A 1

Theorem (P. 2008)

Let *M* be a *t*-motive, and let Γ_M be its associated group via Tannakian duality. Suppose that $\Phi \in \operatorname{GL}_r(\overline{k}(t)) \cap \operatorname{Mat}_r(\overline{k}[t])$ represents multiplication by σ on *M* and that det $\Phi = c(t - \theta)^s$, $c \in \overline{k}^{\times}$.

Theorem (P. 2008)

Let M be a t-motive, and let Γ_M be its associated group via Tannakian duality. Suppose that $\Phi \in \operatorname{GL}_r(\overline{k}(t)) \cap \operatorname{Mat}_r(\overline{k}[t])$ represents multiplication by σ on M and that det $\Phi = c(t - \theta)^s$, $c \in \overline{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\operatorname{GL}_r(\mathbb{T}) \cap \operatorname{Mat}_r(\mathbb{E})$.

Theorem (P. 2008)

Let M be a t-motive, and let Γ_M be its associated group via Tannakian duality. Suppose that $\Phi \in \operatorname{GL}_r(\overline{k}(t)) \cap \operatorname{Mat}_r(\overline{k}[t])$ represents multiplication by σ on M and that det $\Phi = c(t - \theta)^s$, $c \in \overline{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\operatorname{GL}_r(\mathbb{T}) \cap \operatorname{Mat}_r(\mathbb{E})$. Finally let

 $L = \overline{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}}.$

Theorem (P. 2008)

Let M be a t-motive, and let Γ_M be its associated group via Tannakian duality. Suppose that $\Phi \in \operatorname{GL}_r(\overline{k}(t)) \cap \operatorname{Mat}_r(\overline{k}[t])$ represents multiplication by σ on M and that det $\Phi = c(t - \theta)^s$, $c \in \overline{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\operatorname{GL}_r(\mathbb{T}) \cap \operatorname{Mat}_r(\mathbb{E})$. Finally let

$$L = \overline{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}}.$$

Then

tr. deg_{$$\overline{k}$$} $L = \dim \Gamma_M$.

Remarks: If *M* arises from an actual Anderson *t*-motive, then the hypotheses of the theorem are automatically satisfied.

不同 とうきょうきょう

Theorem (P. 2008)

Let M be a t-motive, and let Γ_M be its associated group via Tannakian duality. Suppose that $\Phi \in \operatorname{GL}_r(\overline{k}(t)) \cap \operatorname{Mat}_r(\overline{k}[t])$ represents multiplication by σ on M and that det $\Phi = c(t - \theta)^s$, $c \in \overline{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\operatorname{GL}_r(\mathbb{T}) \cap \operatorname{Mat}_r(\mathbb{E})$. Finally let

$$L = \overline{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}}.$$

Then

tr. deg_{$$\overline{k}$$} $L = \dim \Gamma_M$.

Remarks: If *M* arises from an actual Anderson *t*-motive, then the hypotheses of the theorem are automatically satisfied.

In practice to calculate dim Γ_M , we calculate Γ_{Ψ} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

• Fix $d \ge 1$. For each $n \ge 1$, the entries of the Kronecker product,

Ψ^{⊗n},

are all degree *n* monomials in the entries of Ψ .

Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

• Fix $d \ge 1$. For each $n \ge 1$, the entries of the Kronecker product,

are all degree *n* monomials in the entries of Ψ .

 Let ψ be the column vector whose entries are the concatenation of 1 and each of the columns of Ψ^{⊗n} for n ≤ d. Let

 $\Psi^{\otimes n}$

$$\overline{\Phi} = [1] \oplus \Phi^{\oplus r} \oplus (\Phi^{\otimes 2})^{\oplus r^2} \oplus \cdots \oplus (\Phi^{\otimes d})^{\oplus r^d}$$

Sketch of the proof

Needless to say the proof relies heavily on the ABP-criterion.

• Fix $d \ge 1$. For each $n \ge 1$, the entries of the Kronecker product,

are all degree *n* monomials in the entries of Ψ .

 Let ψ be the column vector whose entries are the concatenation of 1 and each of the columns of Ψ^{⊗n} for n ≤ d. Let

 $\Psi^{\otimes n}$

$$\overline{\Phi} = [1] \oplus \Phi^{\oplus r} \oplus (\Phi^{\otimes 2})^{\oplus r^2} \oplus \cdots \oplus (\Phi^{\otimes d})^{\oplus r^d}$$

Then

$$\overline{\psi}^{(-1)} = \overline{\Phi} \,\overline{\psi}.$$

500

• Any polynomial relations over \overline{k} among the entries of $\Psi(\theta)$ will eventually appear as a \overline{k} -linear relation among the entries of $\overline{\psi}(\theta)$, once *d* is large enough.

- Any polynomial relations over \overline{k} among the entries of $\Psi(\theta)$ will eventually appear as a \overline{k} -linear relation among the entries of $\overline{\psi}(\theta)$, once *d* is large enough.
- Use the ABP-criterion to show that

$$\dim_{\overline{k}} Q_d = \dim_{\overline{k}(t)} S_d,$$

where

- Q_d is the \overline{k} -span of the entries of $\overline{\psi}(\theta)$;
- S_d is the $\overline{k}(t)$ -span of the entries of ψ .

- Any polynomial relations over \overline{k} among the entries of $\Psi(\theta)$ will eventually appear as a \overline{k} -linear relation among the entries of $\overline{\psi}(\theta)$, once *d* is large enough.
- Use the ABP-criterion to show that

$$\dim_{\overline{k}} Q_d = \dim_{\overline{k}(t)} S_d,$$

where

- Q_d is the \overline{k} -span of the entries of $\overline{\psi}(\theta)$;
- S_d is the $\overline{k}(t)$ -span of the entries of ψ .
- Once we show this for each *d*, the equality of transcendence degrees follows (by a comparison of Hilbert series).

 π_q is transcendental

• Work in the setting of the Carlitz motive *C* with r = 1; $\Phi = t - \theta$; $\Psi = \Omega(t)$:

$$\Omega^{(-1)}(t) = (t - \theta)\Omega(t).$$

3

< □ > < 同 > < 回 > < 回 > < 回 > <

 π_q is transcendental

• Work in the setting of the Carlitz motive *C* with r = 1; $\Phi = t - \theta$; $\Psi = \Omega(t)$:

$$\Omega^{(-1)}(t) = (t - \theta)\Omega(t).$$

• tr. deg_{$\overline{k}(t)$} $\overline{k}(t)(\Omega) = 1$

3

Image: A image: A

 π_q is transcendental

• Work in the setting of the Carlitz motive *C* with r = 1; $\Phi = t - \theta$; $\Psi = \Omega(t)$:

$$\Omega^{(-1)}(t) = (t-\theta)\Omega(t).$$

- tr. deg_{$\overline{k}(t)$} $\overline{k}(t)(\Omega) = 1$
- The Galois group Γ in this case is $\mathbb{G}_m = \operatorname{GL}_{1/\mathbb{F}_q(t)}$:

$$\mathbb{G}_m(\mathbb{F}_q(t)) = \mathbb{F}_q(t)^{\times} \cong \operatorname{Aut}_{\sigma}(\overline{k}(t)(\Omega)/\overline{k}(t))$$

via

$$\gamma \in \mathbb{F}_q(t)^{\times}, \ h(t,\Omega) \in \overline{k}(t)(\Omega) \quad \Rightarrow \quad \gamma * h(t,\Omega) = h(t,\Omega\gamma).$$

3

 π_q is transcendental

• Work in the setting of the Carlitz motive *C* with r = 1; $\Phi = t - \theta$; $\Psi = \Omega(t)$:

$$\Omega^{(-1)}(t) = (t-\theta)\Omega(t).$$

- tr. deg_{$\overline{k}(t)$} $\overline{k}(t)(\Omega) = 1$
- The Galois group Γ in this case is $\mathbb{G}_m = \operatorname{GL}_{1/\mathbb{F}_q(t)}$:

$$\mathbb{G}_m(\mathbb{F}_q(t)) = \mathbb{F}_q(t)^{\times} \cong \operatorname{Aut}_{\sigma}(\overline{k}(t)(\Omega)/\overline{k}(t))$$

via

$$\gamma \in \mathbb{F}_q(t)^{\times}, \ h(t,\Omega) \in \overline{k}(t)(\Omega) \quad \Rightarrow \quad \gamma * h(t,\Omega) = h(t,\Omega\gamma).$$

• Previous theorem \Rightarrow

tr.
$$\deg_{\overline{k}} \overline{k}(\Psi(\theta)) = \text{tr. } \deg_{\overline{k}} \overline{k}(\pi_q) = \dim \Gamma = 1.$$

3